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Abstract

Chebyshev polynomials of the first kind are a popular choice for basis polynomials in function ap-
proximation due to their closeness to the Fourier cosine series, their minimization of the worst-case
interpolation error among all monic polynomials on [-1,1], and the unique representation and uniform
convergence of the Chebyshev series expansion to any function on C([−1, 1]). Below, I show equivalent
formulations derived from the fundamental recurrence defining first-kind Chebyshev polynomials 1.1,
then I collect some important properties for approximations with these polynomials 1.2. Lastly, I discuss
the Chebyshev series of functions 1.3 and two bounds for Chebyshev coefficients ?? and convergence ??
for analytic functions.

Notation Unless denoted otherwise, || · || = || · ||2. F denotes the field of numbers; the results hold for
R and C. Regular lowercase letters, e.g., x, denote scalars. Bolded lowercase letters, e.g., x, denote vectors.
Uppercase regular letters, e.g., X, denote matrices. Caligraphic uppercase letters, e.g., X , denote tensors.

1 Univariate Chebyshev Approximation

1.1 Basic Properties of Chebyshev polynomials

Lemma 1.1. (First-kind Chebyshev polynomials [[1], Ch. 1]) The following are equivalent:

1.

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x) (1)

2.
Tn(cos θ) = cos(nθ) ⇐⇒ Tn(x) = cos(ncos−1(x)) (2)

3.

Tn(x) =
1

2
[(x+

󰁳
x2 − 1)n + (x−

󰁳
x2 − 1)n] (3)

Proof: Starting from 1, 2 is verified by induction using de Moivre’s formula and the identity cosα cosβ =
1
2 (cos(α−β)+cos(α+β). 3 is derived from 2 using Euler’s formula and the fact that sin(cos−1(x)) =

√
1− x2

for |x| ≤ 1. □
Lemma 1.2. (Properties of first-kind Chebyshev polynomials [[1], Ch. 2-4])

1. Tn(x) has n roots on [-1,1] at xk = cos( (2k+1)π
2n ) for k = 0, ..., n− 1.

2. max |Tn(x)| = 1 on [-1,1] at xk = cos(kπn ) for k = 0, ..., n.

3. minP∈Pn(F) ||P ||∞,[−1,1] =
Tn

2n−1 .

4. For µ(x) = 1√
1−x2

, 〈Ti, Tj〉µ =

󰀻
󰁁󰀿

󰁁󰀽

π, i = j = 0
π
2 , i = j ∕= 0

0, i ∕= j
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where Pn(F) denotes the set of monic n-degree polynomials. Proof:

1. Since cos((2k + 1)π2 ) = 0, cos(ncos−1(x)) = 0 =⇒ xk = cos( (2k+1)π
2n ) for k = 0, ..., n− 1.

2. | cos(x)| ≤ 1 and cos(kπ) = ±1 =⇒ cos(ncos−1(x)) = ±1 when xk = cos(kπn ) for k = 0, ..., n.

3. Assume P ∗ ∈ Pn(F) has the minimal max absolute value of all n-degree monic polynomials Pn(F) on
[−1, 1]. Let f(x) = Tn(x)

2n−1 −P ∗(x), which is an (n−1)-degree polynomial. This implies |Tn(x)
2n−1 −P ∗(x)| >

0 at the extremal points xk = cos(kπn ), i.e., P ∗ oscillates below Tn(x)
2n−1 at all extremal points on the

interval. Tn(xk) = −Tn(xk+1) implies f(x) oscillates and since there are n+ 1 extremal points, there
must be n roots by the intermediate value theorem, which is a contradiction. By the fundamental
theorem of algebra, f(x) can have at most n− 1 roots. Therefore, no other P ∈ Pn(F) can improve on
Tn(x)
2n−1 without adding roots in [-1,1] (aka adding degrees).

4. Using 2 and the identity cosα cosβ = 1
2 (cos(α−β)+cos(α+β), one can show 〈Ti, Tj〉µ =

󰁕 1

−1
1
2 (cos((i−

j)cos−1(x)) + cos((i + j)cos−1(x)))µ(x)dx. From that integral, the case for i = j = 0 is immediate.

For i = j ∕= 0, using the fact that dcos−1

dx = 1√
1−x2

, we see that
󰁕 1

−1
cos((i + j)cos−1(x)))µ(x)dx = 0,

leaving only
󰁕 1

−1
1
2µ(x)dx = π

2 . For i ∕= j, both integral terms evaluate to 0, as in the previous case.

□

Theorem 1.3. (Chebyshev series [[1], Ch. 5; [2], Theorem 3.1]) Lipschitz continuous f : [−1, 1] → F is
uniquely represented as a Chebyshev series:

f(x) =

∞󰁛

k=0

akTk(x) (4)

which is absolutely and uniformly convergent, with coefficients:

ak =
〈f, Tk〉µ
||Tk||2µ

=

󰀫
1
π 〈f, Tk〉µ, k = 0
2
π 〈f, Tk〉µ, k > 0

(5)

Proof: For 4, by the Stone-Weierstrass theorem [[3], Theorem 7.26], we know that a sequence of polynomials
on [-1,1] exists that converges uniformly to any continuous complex function on [-1,1]. Since {Tk}∞k=0 form
an orthogonal basis in L2

µ([−1, 1]), any function in L2
µ([−1, 1]) can be represented as a linear combination of

the basis functions by the definition of a Hilbert space; therefore, any such function can be represented by
the Chebyshev basis. For absolute and uniformly convergent, we can see from ?? that the coefficients are
bounded and decay exponentially. Hence, the series is absolutely convergent and, since dTn

dx = nUn−1 where

Un(x) =
sin((n+1)cos−1(x))√

1−x2
is the second-kind Chebyshev polynomial, the series of derivatives is convergent,

implying that the series is uniformly convergent on [-1,1] by [[3], Theorem 7.17]. To obtain the optimal
coefficients 5, we minimize F (a) = ||f −

󰁓∞
i=0 aiTi||2µ. Note that:

||f −
∞󰁛

i=0

aiTi||2µ = ||f ||2µ −
∞󰁛

i

ai〈Ti, f〉µ −
∞󰁛

i

a∗i 〈f, Ti〉µ +

∞󰁛

i,j

aia
∗
j 〈Ti, Tj〉µ

=⇒ ∂F

∂a∗i
=

1

2
[−〈f, Ti〉µ + ai||Ti||2µ] = 0

=⇒ ai =
〈f, Ti〉µ
||Ti||2µ

(6)

where the Wirtinger derivative is taken w.r.t. the conjugate of ai and set to 0 to satisfy the Cauchy-Riemann
conditions [4]. □

1.2 Chebyshev Interpolation

Although the analytic solution for a coefficient holds for the truncated series, the challenge is efficiently
approximating the inner product 〈f, Ti〉µ on a finite grid and window. A first choice would be to take
densely-sampled equispaced points. However, it’s well-known that equispaced sampling is often a suboptimal
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(a)
(b)

Figure 1: Comparison of equispaced (a) and nodal (b) Chebyshev interpolation of f(x) = ex cos(4πx). Both
fit a 16-degree polynomial. (a) uses the trapezoidal rule to approximate the inner product from 100 samples.
At the edges, the interpolation destabilizes.

scheme for finite grids on finite windows, leading to large errors at the boundary points [[1], Theorem 6.1].
For uniform convergence, a better choice is to approximate the coefficients at the n+ 1 nodes of Tn+1. This
is also more efficient, especially since n+1 tends to be relatively small leading to fewer function evaluations
and no need for trickery like the trapezoidal rule or complicated quadrature methods.

Theorem 1.4. (Chebyshev interpolant coefficients [[1], Theorem 6.7])

For the Chebyshev nodes of Tn+1,

xk = cos(
(k − 1

2 )π

n+ 1
) for k = 1, ..., n+ 1 (7)

the coefficients are given by:

ci =
2

n+ 1

n+1󰁛

k=1

f(xk)Ti(xk) (8)

Proof: Using the fact:

n+1󰁛

k=1

Ti(xk)Tj(xk) =

󰀻
󰁁󰀿

󰁁󰀽

0, i ∕= j

n+ 1, i = j = 0
n+1
2 , 0 < i = j ≤ n

which results from discrete orthogonality (see [[1], Section 4.6.1] for derivation). Interpolating at the n + 1
Chebyshev nodes, implies:

f(xk) =

n󰁛′

i=0

ciTi(xk)

where
󰁛′

corresponds to weighting the 0th iterate by 1
2 and subsequent iterates by 1. Multiplying by

2
n+1Tj(xk) and summing for each k gives:

2

n+ 1

n+1󰁛

k=1

f(xk)Tj(xk) =

n󰁛′

i=0

ci
2

n+ 1

n+1󰁛

k=1

Ti(xk)Tj(xk) = cj

□

1 contrasts between equispaced 1a and nodal 1b interpolation for a simple function.
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