
Autonomous motion planning for NVIDIA JetBot

Zachary A Stoebnera

aVanderbilt University School of Engineering, Nashville, TN, USA

ABSTRACT

Not only is autonomous driving a major technological fixation of society in the current day but it is also a
booming area of research, with obvious practical application. For vehicles to be fully autonomous, a number of
problems related to perception, decision-making, and notably path planning must be solved in tandem. This
project addresses the game-theoretic path planning aspect of autonomous driving and realizing path planning
on an NVIDIA JetBot, an open-source AI robot. Once the path is planned, the vehicular model must then move
accordingly in reality to complete the path; implementing such motion planning is the primary endgoal of this
project. It was found that JetBot can plan paths with contemporary software and can be programmed to move
in a rudimentary fashion along those paths on a real grid layout. Although the results of this project are not
groundbreaking, they are at least a proof-of-concept and elucidate promising future improvements for motion
planning on JetBot.

Keywords: motion, autonomy, game theory, robotics

1. INTRODUCTION

1.1 Background

Path planning in autonomous vehicles is a booming research area with significant developments.1–3 Although
computer vision and machine learning are often employed to plan motion in autonomous vehicles,4–6 compu-
tationally solving the optimization problems, that arise from in scenarios of motion planning, through a game
theoretic is a lightweight alternative to path solving.7 In this scenario, the path planning optimization problem
is formulated as a nonlinear complementarity problem (NCP) constrained by physics and simple car dynamics,
which cannot necessarily be directly and exactly solved. Instead the NCP can be approximated by linear mixed
complementarity problems (LMCPs), iteratively computing partial paths that together approximate the solution
to the NCP and yield a motion planned trajectory for an autonomous vehicle.

The problem formulation is a non-visual scenario where stationary obstacles are laid out on a grid, in a
predetermined fashion, and an optimal path must be computed through these obstacles to some goal point
without exceeding bounds. Such paths are often nonlinear and can be closely approximated by solving linear
mixed complementarity problems via a pathsolver algorithm. Once the path is determined, the JetBot must
then move in a real setting, of which the software representation of the grid space is a projection. Realizing the

1.2 Motivation

The main goals of this project were to 1. assemble to the NVIDIA JetBot into a working condition to implement
programmatic operation, and 2. implement non-visual path planning based on prior knowledge of an obstacle
course. Initially, a reach goal for visual path planning in a dynamic environment was set, which is set for the
future due to current limitations. To implement non-visual path planning, one subgoal was to utilize a pathsolver7

and CasADi8 to generate a path through a predetermined grid of stationary obstacles. With the path points in
hand, the next, and most important, subgoal was to implement motion planning To my knowledge, no existing
implementation of game-theoretic motion planning exists for NVIDIA JetBot and it appears that, opting for
computer vision-based methods, few have proposed implementations of motion planning from pathsolvers on
JetBot. Therefore, this project is a novel endeavor for JetBot users and applications.

Further author information: (Send correspondence to Z.A.S.)
Z.A.S.: E-mail: zachary.a.stoebner@vanderbilt.edu

1

Figure 1. Fully assembled JetBot. The two views show the camera, ports, wheels, and overall build structure of the
JetBot. In the background is the soldering iron used during assembly.

2. METHODS

2.1 Hardware Setup

The JetBot was built following the documentation on the JetBot homepage. For the parts with multiple options:
the IMX219-160 listed as the second option for cameras, the M2 card + antennas listed as the first option for
wifi, and the 65mm wheels listed as the second option for wheels were used. The total cost was approximately
$300. The hardware setup time was approximately twelve hours spread between two days. A significant portion
of the time was spent extracting a screw terminal from the motor board that was placed incorrectly. 1 shows
the completed JetBot hardware assembly.

2.2 Software Setup

The OS for the JetBot was flashed onto a 64 GB SD card in a two step process. First, the NVIDIA Jetson Nano
OS was flashed to initialize the Jetson and its the drivers. Second, the JetBot OS was flashed over the Jetson
OS on the SD card to initialize the JetBot. On first startup, wifi was configured from the command line; on
subsequent startups, the JetBot would automatically connect to the network and could be interfaced through
JupyterLab on a browser at the JetBot’s IP address. Total software setup time took about 3.5 hours.

2.2.1 CasADi on JetBot

The JetBot OS (Ubuntu 18.04 LTS - aarch64) is not supported by any current binary distributions of CasADi.8

With much investigative effort, it was possible to build CasADi from source, mostly following the instructions
found on the CasADi GitHub wiki. Total build time took about an hour to complete. The command that yielded
a successful build on the JetBot, once all prerequisites and source were installed, was:

1 cmake -DWITH_PYTHON=ON -DWITH_PYTHON3=ON ..

2

https://jetbot.org/master/index.html
https://github.com/casadi/casadi/wiki/InstallationLinux

2.3 Motion Planning

2.3.1 Path Solver

This notebook contains code for non-visual motion planning – the primary objective of the project. The code
relies on an LMCP solver that takes an LMCP formulation in M, q, l, u, x0 and returns a path of points of
z, w, v, t. A pathsolver then iteratively solves LMCPs for Newton points along an overarching path, performing
backward linesearch to progress sufficiently down each of these paths towards the predefined goal point.

Solving many LMCPs approximates a nonlinear path, which can be formulated as an NMCP for which the
KKT conditions must first be derived. The KKT conditions are formulated symbolically so that KKT function
as well as the Jacobian of the KKT can be passed to the pathsolver for sparse JIT evaluation, accelerating
runtime. Once the point sequence is acquired, it is passed to a module for JetBot motion planning to attempt
to move the JetBot along the equivalent trajectory on a real grid space.

2.3.2 Motion Algorithms

To achieve the best motion possible on the JetBot, various motion planning algorithms were implemented: linear
approximation, Manhattan (aka wiggle) motion, and proportional / integrative / derivative (PID) control.9 For
some of these algorithms, the arctan2 function is used to compute the angle for turning from one orientation to
another. (The full code for the JetBotMotion class is included in the appendix.)

arctan 2(∆y,∆x) (1)

The approximate relevant specifications measured for the JetBot were:

1. With two obstacles, sometimes the pathsolver fails if dt is too small =⇒ dt > 0.1

2. Confirmed that the solved states [x, y, vx, vy] closely approximate the dynamics of horizontal motion

3. JetBot moves forward 40cm in 0.75 sec at speed=1

4. JetBot rotates 360 degrees in 1 sec at speed=1

Linear approximation is the approximation of the linear movement along the line between the current point
and the next point in the path sequence. The algorithm first computes the angle difference, turns, and then
moves in a line toward the next point. This algorithm is intuitive but does not account well for vehicle dynamics.

1 def MoveTo(self ,x,y,vx ,vy):

2 x_diff = x - self.pos [0]

3 y_diff = y - self.pos [1]

4

5 if abs(x_diff) > 0.2 or abs(y_diff) > 0.2:

6 self.x_slider.value = x_diff

7 self.y_slider.value = y_diff

8

9 angle = np.arctan2(y_diff , x_diff)

10 self.TurnBy(angle - self.orient)

11 self.orient = angle

12

13 time.sleep (0.01)

14

15 dist = sqrt(x_diff **2 + y_diff **2) # takes 0.75 seconds to go 40 cm forward

16 t = dist *0.75

17 self.ForwardFor(t)

18

19 self.pos = (x,y)

20 print(’Moved to ’, self.pos)

3

Manhattan motion: Manhattan motion is the grid-like travel between two points. It is inspired by the
Manhattan distance. It effectively travels the line between subsequent points by traveling the legs of the right
triangle formed by the distance between them. Unfortunately, this type of movement leaves a huge margin for
error due to lack of smoothness in trajectory and more imprecise movement.

1 def Manhattan(self ,x,y,vx ,vy):

2 x_diff = x - self.pos [0]

3 y_diff = y - self.pos [1]

4

5 tx = abs(x_diff)

6 ty = abs(y_diff)

7 if x_diff > 0.0:

8 self.LeftFor(tx)

9

10 if y_diff > 0.0:

11 self.LeftFor(ty)

12 elif y_diff < -0.0:

13 self.RightFor(ty)

14

15 elif x_diff < -0.0:

16 self.RightFor(tx)

17

18 if y_diff > 0.0:

19 self.LeftFor(ty)

20 elif y_diff < -0.0:

21 self.RightFor(ty)

22

23 self.pos = (x,y)

24 print(’Moved to ’, self.pos)

PID control: Similar to linear approximation, PID control computes the angle difference between two points.
However, this method does not use integration. Rather, the the PID control is simply the sum of the proportion
of the angle by current steering value and derivative of the change in angle, which incorporates the change in
steering into the equation, computed in line 10 of this algorithm. PID control is more sophisticated than the
other two algorithms; however, it is more advanced and therefore may be more challenging to debug and fully
utilize in practice.

1 def MoveWithPIDTo(self ,x,y, vx , vy):

2 x_diff = x - self.pos [0]

3 y_diff = y - self.pos [1]

4 self.x_slider.value = x_diff

5 self.y_slider.value = y_diff

6

7 self.speed_slider.value = self.speed_gain_slider.value

8

9 angle = np.arctan2(y_diff , x_diff)

10 pid = angle * self.steering_gain_slider.value + (angle - self.orient) * self.

steering_dgain_slider.value

11 self.orient = angle

12 print(’Turned by angle ’, angle)

13

14 self.steering_slider.value = pid + self.steering_bias_slider.value

15

16 self.robot.left_motor.value = max(min(self.speed_slider.value + self.

steering_slider.value , 1.0), 0.0)

17 self.robot.right_motor.value = max(min(self.speed_slider.value - self.

steering_slider.value , 1.0), 0.0)

18

4

19 t = self.sleep_slider.value if vx+vy==0 else sqrt((x_diff **2 + y_diff **2) / (vx**2

+ vy**2)) # time to travel to next point at current velocity

20 time.sleep(t)

21

22 self.pos = (x,y)

23 print(’Moved to ’, self.pos)

3. RESULTS

3.1 Basic Movement

Prior to attempting the solution trajectories from the pathsolver, basic movement with linear approximation was
first implemented. 2 shows the movement on the grid on a test sequence of points. Although the JetBot moves
to the first point correctly, subsequent movements are mostly incorrect.

Figure 2. JetBot movement sequence for {(1, 1), (1, 0), (−1, 0), (−1,−1), (0, 1)}. Blue arrows indicate scene flow. The
yellow arrow indicates the point that the JetBot should go to next; the yellow circle indicates the final location.

3.2 Linear Approximation

The primary algorithm used for computing movement along the pathsolver trajectories, linear approximation
was put against single- and double-obstacle courses. 3 and 4 display the results of attempted motion with linear
approximation on these courses. As with basic motion, the JetBot makes the correct first move in both and then
enters the endless circle of death, never to reach its goal.

3.3 Manhattan Motion

Manhattan motion did not effectively follow the pathsolver trajectory, even at the initial point. Often, the wiggle
motion would push the JetBot in reverse if it wiggled too fast. Although the angles should have been identical as
the JetBot is only making right turns, often times the JetBot would overshoot and send itself off course during
Manhattan motion. 5 shows the results of Manhattan motion for a trajectory through a double-obstacle course.

5

Figure 3. Attempted JetBot linear approximation movement on a single obstacle course. The bottom left pane is the
predicted trajectory from the pathsolver. Blue arrows indicate scene flow. The yellow arrow indicates the point that the
JetBot should go to next; the yellow circle indicates the final location.

3.4 PID Control

Luckily, PID control resulted in a decent realistic trajectory. However, after analysis, it appears that the lame
right wheel assisted in a harder right turn, bringing it closer to the goal. Technically, PID should have gone
further straight and overshoot the top of the grid. 6 shows the results of PID control movement for a trajectory
through a double-obstacle course.

4. DISCUSSION

The big achievements that resulted from this project were a working JetBot assembly, a working CasADi resource
on the JetBot, and motion planning fundamentals. For basic motion, the JetBot can in fact move, even with only
linear approximation and not a more sophisticated motion algorithm. However, it is likely that there are bugs,
beyond lack of physics consideration, within the algorithm, particularly in the angle computation from the prior
point given the current orientation, that contribute to movement inaccuracy. Starting out in the trajectories,
the JetBot typically moves in the right direction by a corresponding angle. However, poor understanding of the
physics of the JetBot likely lead to inefficiencies in the turning and other operations that ultimately lead to an

6

Figure 4. Attempted JetBot linear approximation movement on a double obstacle course. The bottom left pane is the
predicted trajectory from the pathsolver. Blue arrows indicate scene flow. The yellow arrow indicates the point that the
JetBot should go to next; the yellow circle indicates the final location.

incorrect trajectory. Although the work needed to accomplish optimal motion planning for JetBot is immense,
the current pitfalls and next steps to resolve them are fairly straightforward.

4.1 Limitations

JetBot’s memory is limited to 1.4 GB after the full OS flash, not including many basic Python packages. Moving
forward, flash OS to a much larger SD card, i.e., a 128 GB SD card. JetBot OS doesn’t support available CasADi
binaries, which, although ultimately not a problem for this project, attributed some strain to the project as it
required careful management of any additional packages downloaded to the JetBot, especially in tandem with
low memory.

JetBot has extremely limited, primitive motion. The SDK only defines functions for moving each individual
motor at a certain speed. Especially from a novice’s standing, lack of predefined intelligent motion, and generally
any impressive pre-implemented functionality, for the JetBot is inhibitory in defining higher-level function, e.g.,
comprehensive motion planning. Not a lame wheel induced a turn bias that empirically skewed results but lack
of specifications for torque, friction, weight, etc. also hindered the acquisition of .

7

Figure 5. Attempted JetBot Manhattan movement on a double obstacle course. The bottom left pane is the predicted
trajectory from the pathsolver. Blue arrows indicate scene flow. The yellow arrow indicates the point that the JetBot
should go to next; the yellow circle indicates the final location.

The primary obstacle preventing accomplishment of the reach goal, the JetBot’s camera functionality is
currently bugged and unable to gather visual data. Without the ability to see, the JetBot cannot even complete
most of the baseline examples for collision avoidance, road following, and object following. The results of these
examples would act as useful resources for any visual path planning algorithms that might be developed for
JetBot in the future.

5. FUTURE IMPROVEMENTS

Given the trajectory of this project, it could benefit from a number of future improvements that will ideally
solve critical issues currently facing motion planning on JetBot. First and foremost, fixing camera and memory
issues will easily elevate the capabilities of the JetBot, which will lead to new software that greatly improves
its motion. Secondly, more precise measurements and accounting for real-world physics could make or break
effective motion planning. Thirdly, extension to N-player path solving that updates based on vision data could
robustify the motion planning performance in the real world. As always, the motion planning method could
benefit from more optimized algorithmic control and additional sensors to offer more information that could be

8

Figure 6. Attempted JetBot PID control movement on a double obstacle course. The middle pane is the predicted
trajectory from the pathsolver. Blue arrows indicate scene flow. The yellow arrow indicates the point that the JetBot
should go to next; the yellow circle indicates the final location.

essential to good movement for the JetBot. Despite the shortcomings, the path ahead for this project is clear
and with some dedication and patience JetBot may outshine other autonomous drones.

REFERENCES

[1] Pepy, R., Lambert, A., and Mounier, H., “Path planning using a dynamic vehicle model,” in [2006 2nd
International Conference on Information Communication Technologies], 1, 781–786 (2006).

[2] Choset, H., La Civita, M., and Park, J., “Path planning between two points for a robot experiencing local-
ization error in known and unknown environments,” (11 1999).

[3] Lozano-Perez, T., “A simple motion-planning algorithm for general robot manipulators,” IEEE Journal on
Robotics and Automation 3(3), 224–238 (1987).

[4] Yonetani, R., Taniai, T., Barekatain, M., Nishimura, M., and Kanezaki, A., “Path planning using neural a*
search,” in [International Conference on Machine Learning], 12029–12039, PMLR (2021).

[5] Lee, L., Parisotto, E., Chaplot, D. S., Xing, E., and Salakhutdinov, R., “Gated path planning networks,” in
[International Conference on Machine Learning], 2947–2955, PMLR (2018).

[6] Mansouri, S. S., Kanellakis, C., Fresk, E., Kominiak, D., and Nikolakopoulos, G., “Cooperative coverage
path planning for visual inspection,” Control Engineering Practice 74, 118–131 (2018).

[7] Dirkse, S. and Ferris, M., “The path solver: A non-monotone stabilization scheme for mixed complementarity
problems,” Optimization Methods and Software 5 (12 1993).

9

[8] Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M., “CasADi – A software framework
for nonlinear optimization and optimal control,” Mathematical Programming Computation (In Press, 2018).

[9] Araki, M., “Pid control,” CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION 2.

6. APPENDIX

1 from math import pi, atan2 , sqrt , degrees

2 import time

3 import numpy as np

4

5 from IPython.display import display

6 import ipywidgets

7 import traitlets

8

9 from jetbot import Robot , Camera , bgr8_to_jpeg

10 import cv2

11 import numpy as np

12 import torchvision

13

14 mean = 255.0 * np.array ([0.485 , 0.456, 0.406])

15 stdev = 255.0 * np.array ([0.229 , 0.224 , 0.225])

16

17 normalize = torchvision.transforms.Normalize(mean , stdev)

18

19 def preprocess(camera_value):

20 global device , normalize

21 x = camera_value

22 x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)

23 x = x.transpose ((2, 0, 1))

24 x = torch.from_numpy(x).float()

25 x = normalize(x)

26 x = x.to(device)

27 x = x[None , ...]

28 return x

29

30 class JetBotMotion:

31 def __init__(self , robot , dt , orient =0):

32 self.robot = robot # jetbot robot object

33 self.dt = dt

34 self.pos = (0,0)

35 self.init_orient = orient

36 self.orient = orient # orientation relative to the origin

37

38 self.speed_gain_slider = ipywidgets.FloatSlider(min=0.0, max=1.0, step =0.01 ,

value =0.1, description=’speed gain’)

39 self.steering_gain_slider = ipywidgets.FloatSlider(min=0.0, max=1.0, step

=0.01 , value =0.2, description=’steering gain’)

40 self.steering_dgain_slider = ipywidgets.FloatSlider(min=0.0, max=0.5, step

=0.001 , value =0.0, description=’steering kd’)

41 self.steering_bias_slider = ipywidgets.FloatSlider(min=-0.3, max=0.3, step

=0.01 , value =0.0, description=’steering bias’)

42

43 display(self.speed_gain_slider , self.steering_gain_slider , self.

steering_dgain_slider , self.steering_bias_slider)

44

45 self.x_slider = ipywidgets.FloatSlider(min=-1.0, max=1.0, description=’x’)

10

46 self.y_slider = ipywidgets.FloatSlider(min=0, max=1.0, orientation=’vertical ’,

description=’y’)

47 self.steering_slider = ipywidgets.FloatSlider(min=-1.0, max=1.0, description=’

steering ’)

48 self.speed_slider = ipywidgets.FloatSlider(min=0, max=1.0, orientation=’

vertical ’, description=’speed ’)

49 self.sleep_slider = ipywidgets.FloatSlider(min=0.0, max=1.0, step =0.001 , value

=0.1, description=’sleep ’)

50

51 display(ipywidgets.HBox([self.y_slider , self.speed_slider]))

52 display(self.x_slider , self.steering_slider , self.sleep_slider)

53

54 def MoveTo(self ,x,y,vx ,vy):

55 x_diff = x - self.pos [0]

56 y_diff = y - self.pos [1]

57

58 if abs(x_diff) > 0.2 or abs(y_diff) > 0.2:

59 self.x_slider.value = x_diff

60 self.y_slider.value = y_diff

61

62 angle = np.arctan2(y_diff , x_diff)

63 self.TurnBy(angle - self.orient)

64 self.orient = angle

65

66 time.sleep (0.01)

67

68 dist = sqrt(x_diff **2 + y_diff **2) # takes 0.75 seconds to go 40 cm

forward

69 t = dist *0.75

70 self.ForwardFor(t)

71

72 self.pos = (x,y)

73 print(’Moved to ’, self.pos)

74

75

76 def MoveWithPIDTo(self ,x,y, vx , vy):

77 x_diff = x - self.pos [0]

78 y_diff = y - self.pos [1]

79 self.x_slider.value = x_diff

80 self.y_slider.value = y_diff

81

82 self.speed_slider.value = self.speed_gain_slider.value

83

84 angle = np.arctan2(y_diff , x_diff)

85 pid = angle * self.steering_gain_slider.value + (angle - self.orient) * self.

steering_dgain_slider.value

86 self.orient = angle

87 print(’Turned by angle ’, angle)

88

89 self.steering_slider.value = pid + self.steering_bias_slider.value

90

91 self.robot.left_motor.value = max(min(self.speed_slider.value + self.

steering_slider.value , 1.0), 0.0)

92 self.robot.right_motor.value = max(min(self.speed_slider.value - self.

steering_slider.value , 1.0), 0.0)

93

94 t = self.sleep_slider.value if vx+vy==0 else sqrt((x_diff **2 + y_diff **2) / (

11

vx**2 + vy**2)) # time to travel to next point at current velocity

95 time.sleep(t)

96

97 self.pos = (x,y)

98 print(’Moved to ’, self.pos)

99

100 def TurnLeft(self):

101 self.robot.set_motors (0.4 , -0.1)

102 time.sleep (1)

103 self.robot.stop()

104

105 def TurnRight(self):

106 self.robot.set_motors (-0.1 ,0.4)

107 time.sleep (1)

108 self.robot.stop()

109

110 def ForwardFor(self , t):

111 self.robot.forward (1)

112 time.sleep(t)

113 self.robot.stop()

114

115 def LeftFor(self ,t):

116 self.TurnLeft ()

117 self.ForwardFor(t)

118

119 def RightFor(self ,t):

120 self.TurnRight ()

121 self.ForwardFor(t)

122

123 def TurnBy(self ,angle):

124 if angle < 0:

125 self.robot.right (0.9)

126 elif angle > 0:

127 self.robot.left (0.9)

128

129 time.sleep(abs(angle)/(2*pi))

130 self.robot.stop()

131

132 print(’Turned by angle ’, degrees(angle))

133

134 def Manhattan(self ,x,y,vx ,vy):

135 x_diff = x - self.pos [0]

136 y_diff = y - self.pos [1]

137

138 tx = abs(x_diff)

139 ty = abs(y_diff)

140 if x_diff > 0.0:

141 self.LeftFor(tx)

142

143 if y_diff > 0.0:

144 self.LeftFor(ty)

145 elif y_diff < -0.0:

146 self.RightFor(ty)

147

148 elif x_diff < -0.0:

149 self.RightFor(tx)

150

12

151 if y_diff > 0.0:

152 self.LeftFor(ty)

153 elif y_diff < -0.0:

154 self.RightFor(ty)

155

156 self.pos = (x,y)

157 print(’Moved to ’, self.pos)

158

159 def Reset(self):

160 self.pos = (0,0)

161 self.orient = self.init_orient

13

	Introduction
	Background
	Motivation

	Methods
	Hardware Setup
	Software Setup
	CasADi on JetBot

	Motion Planning
	Path Solver
	Motion Algorithms

	Results
	Basic Movement
	Linear Approximation
	Manhattan Motion
	PID Control

	Discussion
	Limitations

	Future Improvements
	Appendix

