
1

Towards Generator Network Verification

Zach Stoebner

CS 6315 – Automated Verification

Vanderbilt University

Spring 2021

Abstract

This report details a study on deep generator network verification using the Neural Network

Verification (NNV) toolbox – a set-based deep neural network (DNN) and learning-enabled

verification framework. NNV defines exact and over-approximate reachability algorithms for

several input set representations, such as zonotopes, star sets, and abstract-domain polytopes. In

this project, NNV’s reachability algorithms were applied to an MNIST convolutional classifier

network that takes as input the output of a variational autoencoder (VAE) and a SegNet to verify

the classifier’s robustness in correctly classifying a fake image. The input set representations used

were the ImageZonotope and the ImageStar. The output set methods were the approximated

zonotope, star, and abstract polytope. When the output of the generator network was left untainted,

the classifier robustly classified the fake image in most cases. Similarly, attacking the brightness of

the real and fake images expectedly confused the model more than the unperturbed images. Large

attacks resulted in greater confusion, while the classifier was still robust in a few cases for small

brightness attacks. Raw input classification was not more robust than the fake inputs, which are

clearly imperfect, while brightness attacks can confound the model.

1 Introduction

1.1 Background

In recent years, neural networks have gained unprecedented traction in

both research and industry. Unfortunately, current DNNs are often confused easily

by imperceptible disturbances, i.e., blurring or intensity changes, and typically do

not generalize well to all types of input. As DNNs have entered the mainstream

through the CPS economy, tunnel vision in DNNs leads to a host of safety

concerns. In turn, research into efficient and effective methods to verify the safety

and robustness of this technology has garnered increasing interest [1].

Algorithms for verifying of neural networks generally aim to analyze

layer-by-layer reachability to determine bounds for the nodes and output or falsify

an assertion through search or optimization algorithms [2]. In terms of

2

reachability, a neural network can be visualized as a transition system where each

layer transforms the input so that, theoretically, the reach set at each layer could

be computed given any possible input set. After the set is transformed through all

layers, then the intersection of the transformed set and a property can yield

counterexamples to determine the robustness of the model. Unironically, verifying

DNNs is just as challenging as building and training them, if not more. First off,

input domains for these models are often infinite and dynamic; for example,

image datasets are constantly growing due to the myriad ways to obtain an image

of the same subjects. Secondly, standard classifier networks, such as VGG-16 and

VGG-19 [3], have upwards of 100 million parameters, which can take hours to

train and likely many more to verify all possibilities on those parameters for a set

of inputs. Lastly, the activation functions can split the set, making the reach set

computation non-trivial. In fact, few DNN verification frameworks support

activation functions besides the rectified linear unit (ReLU) [2].

1.2 Motivation

As a result of the novelty of DNN verification, little investigation has been

conducted on verifying generator networks, particularly due to few frameworks

supporting upsampling layers. Thankfully, NNV [4] has budding support for

semantic segmentation architectures and is developing more support for DNN

architectures that employ upsampling. To help set a baseline and justify the need

for further investigation into deep generator network verification, this project is a

case study on how a small MNIST [5] convolutional classifier responds to the

fake outputs of two different, well-known autoencoder frameworks: the VAE [6]

and SegNet [7].

2 Methods

 All training and experiments were run on a MacBook Pro using CPU. All

training, code, and experiments were written in MATLAB. The small

convolutional classifier was ported from the MNIST CNN examples included in

NNV.

3

4.1 VAE

 The VAE was assembled traditionally, splitting the encoder and decoder

networks into two separate components and manually sampling the latent space to

feed into the decoder. The ELBO [8] loss function was used to compute the

gradients for training and the VAE was trained for 50 epochs mini-batch size of

512 and a learning rate of 1e-3; the runtime for VAE training was approximately 1

hour on CPU. Figure 1 displays the layer graphs for the encoder and decoder

components of the VAE. Figure 2 shows examples of the real inputs and fake

outputs of the VAE.

Figure 1. Layer graphs for the VAE encoder (left) and decoder (right). The encoder is comprised

of two convolution-ReLU blocks followed by a fully connected layer to generate the latent vector.

The decoder is comprised of three transposed convolution-ReLU blocks followed by a final

transposed convolutional layer to obtain the original image’s dimension. The sample latent vector

is generated from the encoder via the VAE’s additional mean and standard deviation latent vectors.

4

Figure 2. Examples of real inputs (left) and fake outputs (right) for the VAE. The pairs

demonstrate examples where the VAE performs well and where it does not, noticeably a ‘9’ that

becomes an ‘8’ and a ‘4’ that becomes a ‘9’.

4.2 SegNet

The SegNet was assembled using MATLAB’s built-in SegNet constructor

and modified to generate a fake image instead of a segmentation. To convert the

traditional SegNet architecture into an autoencoder, the pixel classification layer

and SoftMax layer were dropped from the end of the model, which permitted the

generation of a fake image. To keep the training even, the ELBO loss function

was also used to compute the gradients for the SegNet with a mini-batch size of

512 and a learning rate of 1e-3 for 20 epochs; the runtime for SegNet training was

approximately 1.5 hours on CPU. Figure 3 contains the layer graph for the

SegNet. Figure 4 shows examples of the real inputs and fake outputs of the

SegNet. The training scripts for both the VAE and SegNet were adapted from the

MATLAB example on VAEs.

https://www.mathworks.com/help/vision/ref/segnetlayers.html
https://www.mathworks.com/help/deeplearning/ug/train-a-variational-autoencoder-vae-to-generate-images.html

5

Figure 3. Layer graph for the SegNet autoencoder. The encoder is composed of two convolutional-

batch normalization-ReLU blocks followed by a max pooling layer at the bottleneck. The decoder

is composed of an unpooling layer at the bottleneck followed by two transposed convolutional-

batch normalization-ReLU blocks. Unlike the VAE, the SegNet does not require sampling after

encoding and can therefore be joined as a single SeriesNetwork.

4.3 Classifier Verification

 To verify the classifier against the fake output images from each model,

NNV parsed the model into a CNN representation. Then, 10 images were

randomly drawn from the MNIST test set, one for each class. For each image,

either no attack or a brightness attack occurred after the prediction. Two separate

attacks were made, eliminating the top 1% or 5% of intensities where the lower

bound image zeroed out the original intensity while the upper bound kept 5% of

the original intensity. For untainted images, the lower and upper bounds were the

same as the predicted image. After computing lower and upper bounds, the

ImageZonotope set was constructed from the bounds and then the ImageStar set

was computed directly from the ImageZonotope set [9]. Finally, the sets were

passed to the NNV representation of the classifier to approximate the zonotope,

star, and abstract polytope reach sets.

6

Figure 4. Examples of real inputs (left) and fake outputs (right) for the SegNet autoencoder.

Compared to the VAE, the SegNet is less confused about the structure of the input images.

However, the two channel output results in an average of the binary masks which gives a gray

image.

4.4 Analysis

After computing the reach sets, the error bars for each class in each output

set were plotted. NNV’s MNIST CNN example plotting code was used for the

error charts. Three points of comparison were used for the analysis: classifying

the raw MNIST images, the VAE’s fake images, and the SegNet’s fake outputs.

To understand the robustness of each of the three tasks, the error bar charts were

empirically analyzed to discern whether the classifier was robust for a given class

for a given task, as well as trends across the three tasks. The classifier is robust for

a given class for a given model if the lower bound of the error bar for the class is

greater than the upper bound of all other class’ error bars on any one of the three

output sets’ charts.

4.5 Implementation Details

 Due to the sigmoid function converting the images to [0,1] greyscale, fake

images were interpolated to [0,255] to conform to the expected input values of the

MNIST classifier. To verify the SegNet autoencoder, the predicted images have

two channels, for each segmentation class, whereas the classifier expects only

one. To conform, the mean image across the channels of the SegNet prediction

7

was used. Afterwards, a threshold of 150 was applied to the SegNet images where

all intensities below that threshold were zeroed out. Since the segmentation

classes are 0 and 1, the SegNet learned semi-binary masks for each class on each

layer which were then averaged so pixels that assuredly do not contain part of the

number resulted in 0.5, which ultimately lead to 127.5 from the interpolation.

Therefore, scaling those pixels down to 0 plus some grace for any straggling gray

pixels resulted in the “true” fake output of the SegNet autoencoder. Figure 5

displays an example of the predicted image, lower bound, and upper bound

images for the SegNet output after thresholding, which are analogous to the

classifier input images of the other two tasks.

Figure 5. Example of SegNet images after interpolation and thresholding. These classifier input

images are also analogous to those for the VAE and the baseline.

3 Results

For all three sets of images, the ImageZonotope set yielded inconclusive

results about the robustness of the classifier. Not one zonotope result showed a

robust error bar; all of them overlapped for every input image. On the other hand,

the ImageStar and abstract polytope sets had almost identical results and were

indicative of the classifier’s robustness. Hence, their error charts were used for the

analysis.

Both the VAE and SegNet generated surprisingly convincing fake images,

for their relatively short training times, often “tricking” the classifier into

classifying them as the correct class as if they were the real image. When no

attack occurred, the classifier was less robust against fake images produced by the

VAE than those of SegNet after thresholding. On the other hand, the classifier’s

robustness against fake images from SegNet was on par with that of the baseline

when no attack occurred.

MATLAB repeatedly hung during attacks on the baseline; unfortunately,

no results were obtained after the fourth digit for the 1% attack on the baseline to

8

offer a complete comparison with the autoencoders. Considering only the first

four digits of the 1% attack, the classifier was more robust to SegNet fake images

than the baseline images and the classifier was more robust to VAE images than

those of the baseline and SegNet. Comparing VAE images and SegNet images on

the 1% attack, the classifier’s robustness was similar for both, but it favored

different classes for each.

For the 5% attack, the classifier was ostensibly less robust against the

VAE images compared to the SegNet images. For both sets, the more intense

attack resulted in worse performance, as expected. Additionally, the attack

resulted in more overlapping error bars, suggesting that the model was

confounded and could not recognize the input with confidence. Table 1

summarizes the results of these attacks on the three different sets of images fed to

the classifier.

All error charts for the baseline, VAE, and SegNet images are included as

artifacts with the submission.

Across all three methods, the classifier was seemingly most robust to the

digit ‘3’. This trend is further confirmed by their narrow error bars for the attacks;

other classes for which the classifier is less robust typically had much wider error

bars. Figure 6 displays the error bars for the three methods from the 1% attack for

the ImageStar set.

Table 1. Summary of results per class for baseline, VAE, and SegNet images passed to the

classifier. - = robust, {0,1,2,3,4,5,6,7,8,9} = not robust, misclassified to digit, ? = not robust,

uncertain, overlapping ranges, ~ = no data.

Baseline VAE SegNet

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

No attack - - - - - - 2 - - - - 4 - - 9 - 4 - - - - - - - - - - 2 - -

1% attack ? ? - - ? ~ ~ ~ ~ ~ - 8 - - - ? ? 2 - ? 3 7 - - - - ? ? ? -

5% attack ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 ? ? - ? ? ? ? ? ? ? ? - - ? - 4 ? ? ?

9

Figure 6. Error bars for the digit ‘3’ for each method for the ImageStar set for the 1% attack. The

classifier was distinctly robust to this class for the three types of images, for both attacks.

Compared to other classes, the error bars for the ‘3’ class are very narrow for an attacked image.

Attempts to directly verify the robustness of the classifier resulted in

uncertainty when approximating the output set. Computing the exact set to verify

robustness was not feasible given the CPU constraint, preventing the acquisition

of counter examples for analysis.

4 Discussion

4.1 Takeaways

 Given the contrast between the ImageZonotope and the ImageStar sets in

yielding conclusive results, these findings suggest that NNV’s ImageStar

implementation is the superior representation of image input sets for CNNs.

Interestingly, the abstract polytope set performs almost identically so perhaps, at

least for this problem, it is as informative as the ImageStar.

 Also demonstrated in the results, the classifier is less robust in the face of

attacks and becomes even more confused as the percentage of attacked pixels

increases. Even as few as 1% of the pixels in a 784-pixel image can noticeably

confound a DNN and hinder its performance, even for a DNN as trivial as a feed-

forward classifier. These findings corroborate known shortcomings of DNNs and

Baseline VAE SegNet

10

justify the need for improvements to deep learning itself and deep learning

verification to qualify deployed DNNs.

 The most important takeaway from these results is that the classifier is as

robust against the generated fake images from two relatively simple autoencoders

as it is against the raw input images that it was originally trained on. This finding

is interesting because the fake images are obviously different from their

associated real images, as shown in Figures 2 and 4. Yet, dropping the brightness

of only the top 1% of an image’s pixels can confuse the classifier and even make

the reach set computation more challenging. Justifying further investigation into

generator network verification, a method to find the reach set of these

autoencoders alongside the classifier would hopefully illuminate more about the

underpinnings of the autoencoder. Such information would help to not only

understand how an autoencoder can trick a classifier with an imperfect example,

while lightly changing brightness can stupefy it, but also improve the fake output

of the autoencoder to truly recreate the real input.

4.2 Considerations

The input set representation is important to consider because if it does not

align well with the set expected by the model then it will not elucidate any useful

information about the robustness. The inconclusive results of the ImageZonotopes

for every experiment evinces this aspect of DNN verification. Another aspect of

this consideration is likely evidenced by the occasional hanging for certain attacks

on the images. The activations for the attacked images are likely not as strong and

causs the ReLU to receive values that are not as clearly separated as those that

occur for a recognizable digit.

Another important consideration is the randomization factor. Relative to

most statistical analyses, only a few dozen reach sets were computed for each of

the of three tasks. Therefore, the results obtained may be a non-representative

subset of the possible results. However, these models are rigid in this context so

they should yield the same output given the same input. Since the MNIST digits

are standard, it is likely that these are representative results.

11

5 Future Work

5.1 Short-Term

To proceed with future work, a GPU will be necessary. Immediate future

work includes a true statistical battery on the robustness of the classifier for each

of the cases and attempting to complete the reachability analysis of attacks before

prediction on the real images and attacks on the real images fed directly to the

classifier for the baseline. However, this goal for future work assumes that a GPU

could compute these tasks in a reasonable amount of time, yet they could be

nearly intractable, if not entirely.

5.2 Long-Term

Long-term future work includes extending NNV to support autoencoders,

or CNN objects that can verify transposed convolutional layers and max

unpooling layers, beyond the segmentation task. After this extension, solving the

concatenation of two separately trained DNN components into a single network

would allow the verification of the entire network, instead of the CNN only. In

this project, each autoencoder and the classifier were separately trained, which

unfortunately prohibited composition into a single SeriesNetwork. This problem is

likely related to MATLAB programming, not NNV, and may potentially already

be possible, despite the limited read-only functionality of MATLABs deep

learning API.

6 References

[1] X. Huang et al., “A Survey of Safety and Trustworthiness of Deep Neural

Networks: Verification, Testing, Adversarial Attack and Defence, and

Interpretability ∗,” arXiv, pp. 0–94, 2018.

[2] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J. Kochenderfer,

“Algorithms for verifying deep neural networks,” arXiv, pp. 1–126, 2019,

doi: 10.1561/2400000035.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015

- Conf. Track Proc., pp. 1–14, 2015.

12

[4] H. D. Tran et al., “NNV: The Neural Network Verification Tool for Deep

Neural Networks and Learning-Enabled Cyber-Physical Systems,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 12224 LNCS, pp. 3–17, 2020, doi: 10.1007/978-3-

030-53288-8_1.

[5] Y. Lecun, L. Bottou, Y. Bengio, and P. Ha, “LeNet,” Proc. IEEE, no.

November, pp. 1–46, 1998.

[6] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2nd Int.

Conf. Learn. Represent. ICLR 2014 - Conf. Track Proc., no. Ml, pp. 1–14,

2014.

[7] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep

Convolutional Encoder-Decoder Architecture for Image Segmentation,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,

2017, doi: 10.1109/TPAMI.2016.2644615.

[8] A. A. Alemi, B. Poole, I. Fische, J. V. Dillon, R. A. Saurous, and K.

Murphy, “Fixing a broken elbo,” 35th Int. Conf. Mach. Learn. ICML 2018,

vol. 1, pp. 245–265, 2018.

[9] H. D. Tran et al., “Star-based reachability analysis of deep neural

networks,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 11800 LNCS, pp. 670–686, 2019,

doi: 10.1007/978-3-030-30942-8_39.

