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Abstract—This paper presents face following and visual ORB 

simultaneous localization and mapping (vSLAM) implementations 

for an unmanned aerial vehicle (UAV) that operate in real time, 

out of simulation. The software was written for Ryze Tello using 

its hardware support toolkit in MATLAB. Building on, 

translating, and modifying the implementation of these systems in 

other scenarios, I designed a side-by-side set of functions to 

generalize face following and vSLAM for the Tello quadcopter and 

to provide tools for myself and others to integrate and improve our 

projects. To follow faces, the faces are first detected using an object 

detector and then labeled with a bounding box that is used to 

compute the approximate trajectory to center the Tello on the face. 

My vSLAM implementation modifies the ORB-SLAM paper’s 

MATLAB example to handle real-time, imperfect image input and 

provide a measure of redundancy for a realistic CPS. In an ideal 

environment, these implementations work relatively well. As a 

cyberphysical system (CPS) that is heavily reliant on camera input 

and WiFi connectivity, working conditions can greatly impact the 

Tello’s successful execution of the procedures. For the benefit of 

the community, the code is publicly available at 

https://github.com/zstoebs/tello_detection_SLAM.  

 
Index Terms—Face detection, following, simultaneous 

localization and mapping (SLAM), monocular vision, recognition, 

tracking, unmanned aerial vehicle (UAV) 

 

I. BACKGROUND 

HE most pressing technological challenge of our time is 

creating systems that think and behave like humans. When 

machines are built that can emulate human thinking behavior, 

they usually remind us of particularly helpless infants, 

necessitating constant supervision and manual correction to 

even achieve their designated tasks. An even greater, seemingly 

insurmountable, challenge on top of just thinking and behaving 

is constructing systems that conduct their behavior 

autonomously, without endless handholding. Unfortunately, 

not only is inventing new software and hardware to even 

establish the theory of autonomy incredibly difficult but 

implementing intelligent system autonomy in practice is marred 

by unforeseen conflicts, in the sensor readings, in the operating 

system, etc., that often hinder the full meaning of “autonomy.” 

But once that challenge is superseded, humanity may step into 

the next fold of its history. But we have so much mileage to 
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cover and a many more checkpoints to reach.  

 Two of those checkpoints include: object detection & 

following and SLAM. At face value these terms may not seem 

vague, but when it comes to implementation there are many 

specifics that enter the fold such that implementation all of 

object detection and all of SLAM is not feasible. That said, we 

will narrow down the tasks to a digestible level for a small 

UAV. To help bring this autonomy to life, this project will use 

a Ryze Tello and its hardware support in MATLAB1.  

 

A. Introduction to Face Following 

For us, detecting other faces is natural and reflexive. Even 

going a step deeper to recognize a face is also an involuntary 

reflex for most people. On top of that, integrating motion and 

vision to follow a face is also an absurdly simple task for 

most people to accomplish. Why are faces so straightforward 

for people? Notwithstanding the deeper existential answer to 

that question, the answer is that our faces are intrinsically 

human; we have dedicated cortical structures and 

substructures devoted to detecting, recognizing, and homing 

in on faces. Software and hardware lack these highly evolved 

structures; a rather disjunctive feat for people, discerning the 

mathematics and statistics behind face detection and 

following is necessary to bestow our capabilities to 

computers.  

Intuitively, we can imagine human facial recognition as a 

probability function based on a series of glimpses from our 

eyes. Essentially, this statistical model is recreated using a 

boosted cascade that simulates attention and focus on 

specific high-probability details, much like human vision [1]. 

Beyond faces, this cascade detector can be applied to 

learning other objects. MATLAB provides a highly 

optimized cascade object detector 

(vision.cascadeObjectDetector) as part of its Computer 

Vision Toolbox2 that can identify faces and specific facial 

attributes very quickly and reliably. You might be wondering 

if there is any optimized, built-in support for general 

objection, such as the novel YOLO algorithm which can 

quickly detect multiple classes of objects using a single 

neural network [2]. MATLAB’s description is somewhat 

misleading because it only provides support for detecting 
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faces and facial features, not just any object. However, if you 

have a GPU available to use, MATLAB has a YOLO training 

API that could be used to further generalize the 

implementation in this paper to detect and follow other 

objects or groups of objects.  

Once a machine has detected a face using its own camera, 

following the face is somewhat easier. A bounding box can 

be drawn around the face that can be used to compute a 

geometric centering vector for the UAV to follow in order to 

center on the face. To better convey the face following 

pipeline, the schematic is shown in Figure 1, depicting the 

three primary steps after the input to center the UAV.  

 

B. Introduction to SLAM 

For as long as humanity has walked the plains of the world, 

navigation and environmental awareness has been of the 

utmost importance for survival and long-term viability. 

Similar to recognizing faces, we have optimized awareness 

and environmental feature detection that is ingrained in our 

biology that allow us to effortlessly learn, map, localize, and 

navigate our surroundings. Yes, sometimes navigation is a 

shoddy when we are introduced to new environments but, 

alas, we learn and cement the environments into our 

memories as we are repeatedly exposed to the same pattern 

of features.  

 However, machines are not as primed for this task, 

especially small, mobile machines that have to sacrifice 

robust processing and memory hardware for adequate 

movement. The ability to remember, store, and process 

onboard is one that is attuned to people, not clunky drones. 

Nonetheless, this problem is still partially solvable for UAVs 

because they can enlist the help of an immobile ground 

station with all the compute resources it needs to process and 

store the incoming data from its surroundings. Although 

autonomous navigation with no guides is the end-goal, the 

first problem that needs to be solved is simultaneous 

localization in and mapping of the environment. But before 

that we once again must relay this problem mathematically 

and statistically.  

In order to map the environment, the UAV must detect 

features and store their locations as points in a 3D space. 

Many methods for feature detection exist, such as SIFT [3] 

and SURF [4] These feature detectors combine binary 

hypothesis testing and machine learning tools to extract pixel 

features from two similar images. ORB improves on feature 

extraction by significantly speeding up the computation and 

uses decorrelation and ANOVA reduce noise and remain 

rotation invariant [5]. At the fundamental level, the mapping 

problem is estimating the conditional probability distribution 

in Equation 1. 

  

𝑃(𝑚 | 𝑥0:𝑘 , 𝑧0:𝑘 , 𝑢0:𝑘) 

m corresponds to the map of features locations. x0:k 

corresponds to the UAV’s estimated location at each time 

point. z0:k corresponds to the estimated feature locations from 

the UAV’s camera at each time point. u0:k corresponds to the 

movement sequence since the first time point.   

 

Applying the feature detector to images from a UAV 

camera allows us to construct a feature map and, by 

comparing with previous frames, we can also determine 

distances and camera pose – a computation that cannot easily 

be done on a single frame. From these distances and poses, 

we can compute an estimation of where the UAV camera is 

relative to the features. With the mapping, distance, and pose 

at each point, we can also estimate a path for the UAV within 

the environment, which alongside the map results in a SLAM 

system. That said, this subproblem essentially encompasses 

visual odometry, which is essentially SLAM without saving 

the map and just tracking the camera trajectory [6]. At the 

fundamental level, the mapping problem is estimating the 

conditional probability distribution in Equation 2. 

 

𝑃(𝑥𝑘 | 𝑧0:𝑘 , 𝑢0:𝑘 , 𝑚) 

xk corresponds to the UAV’s estimated location at the current 

time point. z0:k corresponds to the estimated feature locations 

from the UAV’s camera at each time point. u0:k corresponds 

to the movement sequence since the first time point. m 

corresponds to the map of features locations.   

  

Unsurprisingly, many SLAM variations exist since there 

are a lot of moving parts in this algorithm that might cause 

bottlenecks for some systems. Two such variations are: 

RGB-D SLAM [7] and ORB-SLAM [8]. RBG-D SLAM is a 

few years older than ORB-SLAM and passes depth images 

to a back-end to estimate pose and the RBG images to a front-

end to map features, receive the pose estimation, and 

generate the point cloud and pose trajectory. ORB-SLAM 

(2) 

(1) 

Cascade 
Detector

1. Detect face

2. Compute distance vector

3. Center UAV

Figure 1. Face following schematic. An image is passed 

to the cascade object detector. The detector draws a 

bounding box around the face. The centering vector 

from the current center to the center of the bounding box 

is computed. The UAV moves in the direction of the 

centering vector while maintaining a safe, specified 

distance. 
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specifically extracts ORB features, hence the name, 

initializes a map based on a pairwise feature mapping 

between two consecutive images, it keeps track of the local 

map and iterates through images until there is a “keyframe” 

e.g. a significant difference in the feature matches with the 

previous keyframe. Then, it updates the map and pose at this 

keyframe, saving on a significant computational expense. 

Traditional ORB-SLAM expects and checks for a loop 

closure – when an image has significantly similar features to 

an earlier keyframe – to terminate its main loop. Deviating 

away from the traditional pipeline, the ORB-SLAM 

schematic for this paper is displayed in Figure 2.  

Other notes on SLAM: Given the background on SLAM, 

the alliteration of its computational expense, and some 

intuition, it may already be obvious to the reader that SLAM 

is an intractable problem. We can never solve the entire map 

or know precisely where we are located in it; hence the 

computational expense to build the map and determine the 

probability distribution for the location is taxing. SLAM can 

only ever return a best guess of the map and location but for 

problems that require just some partially correct point cloud 

to function at an adequate level, such as path planning, earn 

a practical benefit from the map. Despite its insolvability, 

SLAM is nonetheless useful.  

On visual odometry, the Cadena et al paper posits that a 

SLAM algorithm without loop closure is essentially just 

visual odometry [6]. Although this claim may be entirely 

true, I believe that this implementation is still closer to 

SLAM because it maintains a persistent map whereas visual 

 
3 https://www.mathworks.com/products/parallel-computing.html 

odometry just compares the features of consecutive frame, 

discarding the map altogether [9]. If so, the vSLAM 

implementation in this paper is then visual odometry that is 

almost ORB-SLAM, minus loop closure and the final 

optimization. 

MATLAB provides a standard visual ORB-SLAM 

example on the TUM long_office_household dataset. This 

code and the associated helper functions were adapted to the 

project at hand. In order for this SLAM implementation to 

work, MATLAB’s Computer Vision and Parallel 

Computing3 Toolboxes are required, with the Computer 

Vision Toolbox’s parallel processing backend toggled on.  

 

II. METHOD 

In order to maintain some semblance of a clean, 

interpretable code structure for this project. The hierarchy is 

delegated into three files, using MATLAB2020b:  

1. main.m: This file is the high-level “API” for the project 

code. At the head, it contains all of the necessary notes 

for a full understanding of the code and frequent issues 

that were encountered during its production. Before and 

after the code sections, there are cleanup commands. The 

file then splits into three code sections: 1. connection and 

takeoff, 2. face following, and 3. vSLAM. The face 

following and vSLAM sections are intended to be run 

separately, not consecutively.  

2. follow.m: This file contains the function to recognize a 

face and compute the centering vector and turn angle. 

The arguments to the function are the drone’s camera 

Figure 2. Visual ORB-SLAM schematic. The process starts by initializing the map with two initial frames from the camera. 

During the initialization the UAV jiggles up and down to snapshot slightly different pairs of images with different feature 

extractions but still with some matches. If the map initializes, then the program proceeds to the main loop where it first tracks 

the features on a new frame. If the frame is a keyframe, then the new features are updated into the map. If the frame is not a 

keyframe, then the loop continues. At the start of each loop iteration, the UAV executes the next move in the sequence.  

Map 
Initialization

Tracking
Local 

Mapping

1 frame

Ignore non-keyframes

Initial map points

2 initial frames

Keyframe

Updated map pointsUAV camera

Unblock

UAV jiggles up and down

UAV moves through sequence
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object, the cascade object detector, and a distance 

parameter. It returns the distance changes along the x-, 

y-, and z-axes, the angle in radians for a subsequent turn, 

and the image with the bounding boxes marked in.  

3. vslam.m: This file executes vSLAM until completion or 

error and returns nothing. The arguments to the function 

are the drone object, the drone’s camera object, the 

movement sequence, the number of movement cycles 

for which to run the main loop, and the minimum 

number of ORB feature matches for triangulation.   

On the line of clean code, since many of the utilized functions 

rely on the real-time status and feed of a dynamic CPS, they 

are prone to throw errors that are beyond software’s control. 

In that case, I enclosed functions that were common culprits 

in error handling blocks to have some redundancy in case the 

faulty input comes back in line in a subsequent iteration.  

A. Face Following Method  

 The face following function’s schematic is displayed in 

Figure 1. The function steps are as follows:  

1. Pass the frame to the object detector and retrieve a 

bounding box location(s) for the detected object. 

2. Draw boxes around all of the detected images. 

3. Use the closest bounding box’s width and center 

coordinates to compute the relative axis change as a 

percentage of the max. 
4. Based on some threshold percentage and some 

minimum movement distance, set the axes distances 

and return them to be used in a move command. 

The drone’s camera object is passed to the function to yield 

the image that will passed to the vision.cascadeObjectDetector 

to identify any faces to center on. The height and width of the 

captured frame are then gathered for later use in computing 

the centering vector. Any frame’s center coordinates are 

computed as half of the width and half of the height. 

Afterwards, the image is passed to the object detector, a 

bounding box is returned, and the shape of the bounding box 

is inserted into the original frame to be returned by the 

function.  

The closest bounding box is chosen based on the greatest 

area, assuming no giant faces or massive misclassifications. 

The box width and center coordinates of the bounding box are 

used to compute the pixel distances as a percentage of the 

largest bounding box size, total image width, and total image 

height.  

 

𝑋𝑑𝑖𝑓𝑓 =  (𝑏𝑏𝑜𝑥_𝑠𝑖𝑧𝑒𝑠(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
− bbox_width)/max(bbox_sizes) 

 

𝑌𝑑𝑖𝑓𝑓 =  (𝑏𝑏𝑜𝑥_𝑥 −  𝑐𝑒𝑛𝑡𝑒𝑟_𝑥)/𝑤𝑖𝑑𝑡ℎ 

 

𝑍𝑑𝑖𝑓𝑓 =  (𝑐𝑒𝑛𝑡𝑒𝑟_𝑦 −  𝑏𝑏𝑜𝑥_𝑦)/ℎ𝑒𝑖𝑔ℎ𝑡 

 

Respectively, these three dimensions correspond to the x-, y-, 

and z-axes, whose directions relative to the Tello are displayed 

in Figure 3. The distance from the face to maintain was 

determined using the percentage resulting from Equation 3, 

where a list of bounding box width sizes is indexed by the face 
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following function’s distance argument and causes the drone 

to return a movement value that optimizes toward the desired 

distance. Equations 4 and 5 show a similar optimization 

toward the center of the bounding box, given the direction of 

the move command’s principal axes. If the percentages 

supersede some manual threshold, then the distance along the 

corresponding axis will be returned as ± 0.2 meters depending 

on the sign of the percentage. ± 0.2 meters are the minimum 

distance that is supported by the Tello toolbox along any one 

axis. Additionally, a yaw angle is returned as the y-axis 

percentage of 
𝜋

4
 radians.  

 In the main script’s loop, the return values were used to first 

display and save the bounding boxed images. Next, the axes 

distances are fed to the Tello’s move function and the yaw 

angle called with its turn function. After 60 seconds, the loop 

terminates and the intermediate facial detection images can be 

viewed in the ./imgs/faces directory.  

Notes: Although I verified that a drone object could be passed 

as a function argument and commanded from within an 

executing function, I opted not to define the function that way. 

The encapsulation likely would have been better so that the face 

following function would not have to be run in an external loop. 

However, when I was working with the Tello toolbox at first, I 

noticed some overhead with connectivity when I was initially 

calling the code from within the face following function. 

Although, it neither stopped nor worsened when I switched to 

the top-level call so it may have been due to external factors 

such as overheating or low battery. If necessary, refactoring the 

code into a single function call should not be a major issue.  

 

B. Visual ORB-SLAM Method 

The code for this vSLAM implementation was modified 

from the MATLAB ORB-SLAM example4. In the main 

script, vSLAM, unlike face following, runs 

completely within its own function. The only reliance is the 

setting of the movement sequence in main. Currently the move 

(3) 

Y

X

Z

Figure 3. Axes directions for MATLAB’s Tello hardware 

support package. Positive values are in the direction of the 

axes. The axes are intended to abide by the right-hand rule.  

 

(4) 

(5) 
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sequence has to be manually set because the Tello often 

disconnects randomly on extended flights so short sequences 

for short vSLAM test runs is best.   

The vSLAM function’s schematic is displayed in Figure 2. 

This vSLAM implementation breaks down into three key parts: 

map initialization, tracking and local mapping. Starting with 

map initialization, the steps are as follows:  

1. Track the ORB features on the first image to load the 

pre-points, then track a second image.  

2. Match the ORB feature correspondences between the 

two images.  

3. If enough matches are made (100), compute the 

homography and fundamental matrices so that the 

correct geometric transform is applied based on which 

results in the least error for the relative camera pose.  

4. If insufficient matches are made, then the loop restarts 

on a new image. Manually, the loop has a maximum 

of 5 iterations to find a matched image until an error is 

thrown. If a match is not made in 5 iterations, it may 

imply that the Tello has weak connection and low light 

and needs to be reset.  

5. Triangulate the 3D locations of the matched features 

in the new map.  

For map initialization, I modified the code to take the drone’s 

camera images as input instead of an image data reader for a 
fixed dataset. That way, the images could be read the Tello’s 

images in real-time. Recall that the homography matrix is used 

for planar scenes and the fundamental matrix is used for non-

planar scenes. Map initialization is very important to the initial 

tracking problem in the main loop so it must work well in order 

to have a truly successful vSLAM run.  

 After the map initializes, the initial keyframes and map and 

feature points are set for the main loop to begin running. The 

visualizations also begin in this interim. The first part of the 

main loop is feature tracking, which ultimately determines 

whether the current frame is a keyframe such that the map 

should be updated with new features. A keyframe is any frame 

that satisfies: 1. twenty iterations have passed since the last 

keyframe or the current frame is tracking fewer than 80 of the 

current map points, and 2. current frame tracks fewer than 90% 

of the map points tracked by the current keyframe. Modified to 

work with a moving Tello, the main loop steps are as follows:  

1. Move the drone according to the modulus of the 

current move index by the length of the move 

sequence.  

2. If the Tello loses connection and throws an error, loop 

back to see if connection is regained, changing no 

indices except a break iteration countdown of 10.  

Throw the error if the break countdown expires.  

3. Extract ORB features from the frame and match with 

the latest keyframe. If the new frame is not a keyframe, 

continue the loop.  

4. Estimate the camera pose with Perspective-n-Point 

[10] in order to project the features to the current 

frames perspective and correct using some bundle 

adjustments[8]. This step, although esoteric, is 

important for the fast computation of that ORB-SLAM 

offers compared to the competition.  

5. Determine if the current frame is a key frame given the 

criteria. If so, the process continues to local mapping. 

Else, the loop iterates, and the above steps are redone 

for the next frame. Additionally, this step also speeds 

up the process; instead of evaluating all of the features 

in every frame for mapping, only a select few that are 

substantially different are filtered for usage.  

Now that the meat of ORB-SLAM has concluded with 

tracking and just figuring out whether a frame is unique enough 

to be mapped, the final stage in this vSLAM procedure is local 

mapping. Compared to tracking this procedure is much simpler 

and more intuitive, building the point cloud map and saving the 

pose. The local mapping steps are as follows:  

1. Add the new keyframe to the set.  

2. Compare the keyframes features against all the other 

keyframe features, looking for unmatched points that 

occur in at least 3 other keyframes.  

3. Bundle adjust the pose based on the adjacent 

keyframes’ poses.  

After local mapping, ORB-SLAM typically builds and 

checks the loop closure dataset to determine when the camera 

has circled back to its starting position and then performs one 

last final optimization on the poses. Since this paper’s vSLAM 

is using a predetermined move sequence instead of a 

predetermined dataset, I removed the loop closure since using 

seemed to almost intrinsically rely on the dataset having been 

crafted before the vSLAM run. Additionally, the final 
optimization often failed because it requires a continuous point 

cloud but since Tello’s connection is weak it would sometimes 

black out in between iterations creating discontinuous maps. 

Ultimately, the optimization was not concerning because the 

goal of this project was just to get visual SLAM functional in a 

UAV.  

C. Implementation Details 

As indicated in the previous section, implementation of face 

following and vSLAM both require the Computer Vision 

Toolbox. It is important to then note that both of these 

implementations are heavily vision-based. Additionally, the 

Tello uses its camera to orient so mindfulness of lighting and 

other visual factors was extremely important to ensure that 

these methods worked. The Tello is additionally sensitive to 

drafts and gusts from the blowback of its own propellers, 

pushing it off course. On top of that, Tello does not have a very 

strong WiFi connection and often will blackout mid-flight. Of 

course, disturbances are inevitable and frequent, so they often 

did not work for me until I changed my angle, or the stars 

aligned; persistence is important.  

 

III. EXPERIMENTS 

For testing face following and vSLAM, I experimented with 

both in repeat scenarios and in different settings, offering them 

different encounters that are not explicitly guaranteed.  

A. Face Following Experiments 

To examine face following, I first tested to see if 

MATLAB’s face detector would work as expected, detecting 

my face adequately. Particularly, I wanted to see if it would 

detect my face regardless of whether or not I was looking 

directly at it or if my head were angled differently, such as if I 

were looking at my phone or not. It follows that if it can detect 
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my face at non-frontal angles, then it can compute a centering 

vector and follow my face at that angle. Figure 4 

demonstrates the side-by-side results of these experiments; my 

apartment has poor lighting, so all of my images are poorly lit.  

Similarly, I wanted to see if it could detect parts of faces, up 

to the eyes and still track if some fraction of my head were cut 

off from its view. Tello has a somewhat wide-angle camera so 

I was not able to achieve this horizontally but vertically it was 

fairly easy to trip it up. The results of this experiment are shown 

in Figure 5. If even a fraction of my head were off the screen, 

the detector would not recognize my face.  

I additionally experimented with having no face at all in view 

of the camera to see if the detector misclassifies non-faces. 

Surprisingly, it did misclassify non-faces, but only if a human 

face was not visible to yield a high confidence option. Tello 

particularly liked to focus on the thermostat, as shown in Figure 

6.  

Finally, I wanted to test the full functionality of my face 

following implementation. A POV video is attached in Video 1 

[attached as a separate file]. Overall, the results of face 

following were a success. The process is fairly responsive but a 

little slow to update; the detector is particularly picky about 

vertical movement which has to be slow. Although, if you 

sidestep discretely and crouch and jump slowly it will follow 

your face well! 

 

B. vSLAM Experiments 

For vSLAM, I mainly experimented with having the Tello 

attempt to run it in different parts of my apartment. Different 

areas had different objects and more edges, which I anticipate 

is major factor in the feature extraction. In these experiments, I 

created a move sequence to cycle the drone back and forth, left 

and right, or in a square, both clockwise and counterclockwise. 

I chose these different move sequences to see if they made a 

different in the mapping and feature extraction. Unfortunately, 

since Tello cannot keep a strong connection reliably for a long 

enough duration to add many keyframes, I scrapped this idea 

because there were no obvious differences and I could not make 

any strong statistical claims about such findings with so few 

datapoints. 

There were some limitations to running vSLAM on Tello, 

primarily the high probability of WiFi cutting for longer 

movement sequences and the low lighting in my apartment 

making feature detection that much harder. Often times, the 

feature extraction on the image would result in too few features 

due to a bad read on the image or instability. Typically, the map 

initialization worked well, and the matching yielded some good 

results. An example of a map initialization feature match is 

displayed in Figure 7. Examples of a good feature extraction 

and the average feature extraction in the main loop are shown 

in Figure 8. As suspected, the best feature extraction was often 

times in areas with nearby, crowded spaces with more edges to 

offer vSLAM. 

 In addition to the feature extraction, the point cloud map 

generation was also visualized for these runs. A couple of 

examples of the final point cloud maps and estimated 

trajectories are displayed in Figure 9. Since no more than 10 

keyframes were acquired by Tello, the maps were small but the 

camera pose and estimated trajectory did a fairly good job at 

Figure 5. Examples of when my face is not detected. Sliver of 

head off screen (left), turned away (middle), and only top of 

my head and eyes are visible (right). Ultimately, there has to 

be some frontal view of the entire bust to be detected.    

Figure 4. Examples of when my face is detected. 

Looking at the Tello (left) and not looking at the Tello 

(right). Nonetheless, it still detects my face and 

doesn’t pick up much noise, even in low light.  

Figure 6. Examples of face misclassification. These 

misclassifications typically occur when there is no face 

in view of the camera. Otherwise, they are rare and not 

noticeable during a face following run.  

Figure 7. Example of a map initialization feature match. 

Typically, the map initialized and I could get a sense of 

where the features were.   
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estimating the Tello’s travel given that there were only a few 

keyframe samples.  

 

IV. DISCUSSION 

Fortuitously, the face following and vSLAM 

implementations were at least functional. I believe that these 

results demonstrate. If anything, these two autonomous-leaning 

implementations set the walkway for building up to even more 

complex autonomous behavior using Tello, not considering the 

computational requirements and resources at my disposal 

currently. Of the two, face following works the best and 

vSLAM is slightly more trying of one’s patience to get to work. 

As I mentioned earlier, persistence was the key here. One 

reason that face following might work better is that it is a 

simpler problem that has been studied much longer than 

vSLAM has and hence has more underlying optimization and 

definitely more documentation lying around.  Overall, I am 

itching to develop this vSLAM implementation further; I feel 

as if I am just a few steps away from it working like it was meant 

to. If there is some way I can improve the Tello connection, 

improve its stabilization, and mitigate any of its other external 

factors that apparently cause a significant number of minor 

nuisances then I think that I could integrate face following and 

vSLAM to take quadcopter autonomy to the next level for me.  

During this project, I assuredly spent more time reading code 

and papers to try and understand SLAM in general. I looked 

into using so many different SLAM approaches that it took 

some luck to stumble upon the MATLAB example and stare at 

it long enough to realize that I could repurpose some of its code 

to fit my needs.  

Initially, I intended to use a Parrot ANAFI to implement 

this project in Python. At first the ANAFI seemed very 

promising; it had a somewhat maintained SDK in iOS and an 

Figure 8. Examples of good (left) and average (right) feature extraction. Often times, the good initial feature extractions really set the 

momentum for how the rest of the main loop would turn out. Notice that the busier nearby area with more edges acquires more features.  

Figure 9. Examples of map plots and estimated trajectories and camera pose. Both of the movement sequences were left and right 

images and that the number on the camera indicates that there were 10 keyframes in this vSLAM run.  
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older version of the SDK in Python. But as I explored more and 

tried out the works, I realized that the Parrot SDKs were not 

actively being maintained, were so buggy that they were 

defunct, even on iOS, and that very few developers had ever 

even tried the SDK. At first, I thought I lucked out when I found 

a professor’s library PyParrot library5 but it too was not being 

maintained. Additionally, the library was not very flexible in 

accessing the camera feed and passing back up computed RC 

commands to the main function. I was able to get the ANAFI to 

fly to a predetermined, hard-coded set of commands and save 

images with detected faces but nothing more. By this time, I had 

discovered the MATLAB’s Tello toolbox and decided to table 

ANAFI for another day. Even though I cannot recover the time 

that I lost to attempting to get ANAFI to work, I learned a lot 

about SLAM and what is available out there in terms of research   

To become acquainted with the Tello toolbox, I followed 

along with the premier demo, spinAndFind6. The demo walks 

through a simple script utilizing a few of the key toolbox 

functions and actually uses an object detector to recognize 

Mona Lisa images around the room as it turns and builds a 

montage of a handful of images. I essentially used this script as 

a very small springboard reference since it was peripherally 

related to face following. Other than that, I for the most part 

constructed the logic of the code through trial and error and 

other times referring to a YouTuber’s now-deprecated Python 
implementation7 from before the MATLAB toolbox release that 

I had tested out in the summer.  

 

 Implementation Challenges 

I spent many weeks and many fruitless hours trying to simply 

get drones to respond to my code. Obviously, I spent a 

substantial amount of my initial time breaking my neck with 

ANAFI. But the neck-breaking did not stop when I started 

working with Tello in MATLAB. My experience with 

programming quadcopters was admittedly much more limited 

than I thought before embarking on this project journey. I had 

to improvise frequently and do a lot of debugging. Early this 

semester, I definitely hyped myself and was far too optimistic 

about what I could truly accomplish in a reasonable amount of 

time – this was actually a theme for me this semester and a 

strong life lesson.  

 Particular to Tello, MATLAB’s hardware support package 

does not have a substantial amount of support and there are a 

number of known bugs on the open forum8, many of which I 

encountered while working on this project. Since the support 

package was only released this year, very few answers were 

available and even the devs seemed to be unaware as to why the 

bugs were occurring. Apparently, the battery, the temperature, 

and the lighting are all critically important for Tello to function. 

Additionally, indoors environments where the gusts from its 

own propellers can throw it off course would often push the 

Tello into a collision course from my wall, not to mention that 

spontaneous loss of connection with Tello would cause 

MATLAB to crash completely if the workspace was not 

immediately cleared.  

 
5 https://github.com/amymcgovern/pyparrot 
6 https://www.mathworks.com/videos/control-ryze-tello-drones-from-

matlab-1595582029947.html 

In terms of implementing the functions, I encountered a lot 

of difficulty in programming the movement of the drone 

initially for the face following. It took a ton of manual tweaking 

of parameters that I had defined because the Tello was so 

sensitive to movement in some direction but not in others. 

Particularly, the support package does not operate in terms of 

yaw, pitch, and roll but rather x, y, z and turn. In some ways 

this approach was more intuitive, but in many it was quite 

limiting.  

Implementing vSLAM was whole different beast in and of 

itself. As I scoured the web searching trying to find some hint 

of a viable SLAM implementation for a quadcopter that would 

not ask me to reinvent the wheel, I have never desired a Linux 

computer more. And a virtual machine just will not cut it for 

running SLAM, which invariably requires more memory and 

RAM than I could ever afford to give on my laptop. 

Nonetheless, I learned a lot reading papers and taking the time 

to shapeshift the ORB-SLAM example and actually understand 

the underpinnings of it.  

 

V. CONCLUSION 

In this project, I implemented and experimented with 

face following and ORB-SLAM on a Tello drone using the 

recent MATLAB support package. The road was tough but 

it was worth it, just like any autonomy task that is worth it. 
For both, the results bode well and even though vSLAM 

was slightly hindered by hardware it nonetheless turned out 

a result. With some different iron, these functions could be 

integrated together to take one step closer to full quadcopter 

autonomy. A future avenue of work that I foresee for this 

project is hide-n-seek; using face detect and following to 

hide and catch, vSLAM to learn and map the environment, 

and then using the generated map for path planning.   
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VII. APPENDIX 

 

The code and README will be attached as PDFs. Video 1 will 

also be uploaded separately. Code and usage documentation can 

be found at this GitHub repository: 
https://github.com/zstoebs/tello_detection_SLAM.  

 

 

https://github.com/zstoebs/tello_detection_SLAM

	I. Background
	A. Introduction to Face Following
	B. Introduction to SLAM

	II. Method
	A. Face Following Method
	B. Visual ORB-SLAM Method
	C. Implementation Details

	III. Experiments
	A. Face Following Experiments
	B. vSLAM Experiments

	IV. discussion
	V. Conclusion
	VI. references
	VII. appendix

