
 1

Abstract—This paper presents face following and visual ORB

simultaneous localization and mapping (vSLAM) implementations

for an unmanned aerial vehicle (UAV) that operate in real time,

out of simulation. The software was written for Ryze Tello using

its hardware support toolkit in MATLAB. Building on,

translating, and modifying the implementation of these systems in

other scenarios, I designed a side-by-side set of functions to

generalize face following and vSLAM for the Tello quadcopter and

to provide tools for myself and others to integrate and improve our

projects. To follow faces, the faces are first detected using an object

detector and then labeled with a bounding box that is used to

compute the approximate trajectory to center the Tello on the face.

My vSLAM implementation modifies the ORB-SLAM paper’s

MATLAB example to handle real-time, imperfect image input and

provide a measure of redundancy for a realistic CPS. In an ideal

environment, these implementations work relatively well. As a

cyberphysical system (CPS) that is heavily reliant on camera input

and WiFi connectivity, working conditions can greatly impact the

Tello’s successful execution of the procedures. For the benefit of

the community, the code is publicly available at

https://github.com/zstoebs/tello_detection_SLAM.

Index Terms—Face detection, following, simultaneous

localization and mapping (SLAM), monocular vision, recognition,

tracking, unmanned aerial vehicle (UAV)

I. BACKGROUND

HE most pressing technological challenge of our time is

creating systems that think and behave like humans. When

machines are built that can emulate human thinking behavior,

they usually remind us of particularly helpless infants,

necessitating constant supervision and manual correction to

even achieve their designated tasks. An even greater, seemingly

insurmountable, challenge on top of just thinking and behaving

is constructing systems that conduct their behavior

autonomously, without endless handholding. Unfortunately,

not only is inventing new software and hardware to even

establish the theory of autonomy incredibly difficult but

implementing intelligent system autonomy in practice is marred

by unforeseen conflicts, in the sensor readings, in the operating

system, etc., that often hinder the full meaning of “autonomy.”

But once that challenge is superseded, humanity may step into

the next fold of its history. But we have so much mileage to

Paper submitted December 12, 2020. Zach Stoebner is with the Department

of Electrical Engineering & Computer Science, Vanderbilt University, USA.

The source is publicly available on this GitHub repository:
https://github.com/zstoebs/tello_detection_SLAM.

cover and a many more checkpoints to reach.

 Two of those checkpoints include: object detection &

following and SLAM. At face value these terms may not seem

vague, but when it comes to implementation there are many

specifics that enter the fold such that implementation all of

object detection and all of SLAM is not feasible. That said, we

will narrow down the tasks to a digestible level for a small

UAV. To help bring this autonomy to life, this project will use

a Ryze Tello and its hardware support in MATLAB1.

A. Introduction to Face Following

For us, detecting other faces is natural and reflexive. Even

going a step deeper to recognize a face is also an involuntary

reflex for most people. On top of that, integrating motion and

vision to follow a face is also an absurdly simple task for

most people to accomplish. Why are faces so straightforward

for people? Notwithstanding the deeper existential answer to

that question, the answer is that our faces are intrinsically

human; we have dedicated cortical structures and

substructures devoted to detecting, recognizing, and homing

in on faces. Software and hardware lack these highly evolved

structures; a rather disjunctive feat for people, discerning the

mathematics and statistics behind face detection and

following is necessary to bestow our capabilities to

computers.

Intuitively, we can imagine human facial recognition as a

probability function based on a series of glimpses from our

eyes. Essentially, this statistical model is recreated using a

boosted cascade that simulates attention and focus on

specific high-probability details, much like human vision [1].

Beyond faces, this cascade detector can be applied to

learning other objects. MATLAB provides a highly

optimized cascade object detector

(vision.cascadeObjectDetector) as part of its Computer

Vision Toolbox2 that can identify faces and specific facial

attributes very quickly and reliably. You might be wondering

if there is any optimized, built-in support for general

objection, such as the novel YOLO algorithm which can

quickly detect multiple classes of objects using a single

neural network [2]. MATLAB’s description is somewhat

misleading because it only provides support for detecting

1 https://www.mathworks.com/hardware-support/tello-drone-matlab.html
2 https://www.mathworks.com/products/computer-vision.html

Face Following and Visual ORB-SLAM in an

Unmanned Aerial Vehicle

Zach Stoebner

T

https://github.com/zstoebs/tello_detection_SLAM
https://github.com/zstoebs/tello_detection_SLAM

 2

faces and facial features, not just any object. However, if you

have a GPU available to use, MATLAB has a YOLO training

API that could be used to further generalize the

implementation in this paper to detect and follow other

objects or groups of objects.

Once a machine has detected a face using its own camera,

following the face is somewhat easier. A bounding box can

be drawn around the face that can be used to compute a

geometric centering vector for the UAV to follow in order to

center on the face. To better convey the face following

pipeline, the schematic is shown in Figure 1, depicting the

three primary steps after the input to center the UAV.

B. Introduction to SLAM

For as long as humanity has walked the plains of the world,

navigation and environmental awareness has been of the

utmost importance for survival and long-term viability.

Similar to recognizing faces, we have optimized awareness

and environmental feature detection that is ingrained in our

biology that allow us to effortlessly learn, map, localize, and

navigate our surroundings. Yes, sometimes navigation is a

shoddy when we are introduced to new environments but,

alas, we learn and cement the environments into our

memories as we are repeatedly exposed to the same pattern

of features.

 However, machines are not as primed for this task,

especially small, mobile machines that have to sacrifice

robust processing and memory hardware for adequate

movement. The ability to remember, store, and process

onboard is one that is attuned to people, not clunky drones.

Nonetheless, this problem is still partially solvable for UAVs

because they can enlist the help of an immobile ground

station with all the compute resources it needs to process and

store the incoming data from its surroundings. Although

autonomous navigation with no guides is the end-goal, the

first problem that needs to be solved is simultaneous

localization in and mapping of the environment. But before

that we once again must relay this problem mathematically

and statistically.

In order to map the environment, the UAV must detect

features and store their locations as points in a 3D space.

Many methods for feature detection exist, such as SIFT [3]

and SURF [4] These feature detectors combine binary

hypothesis testing and machine learning tools to extract pixel

features from two similar images. ORB improves on feature

extraction by significantly speeding up the computation and

uses decorrelation and ANOVA reduce noise and remain

rotation invariant [5]. At the fundamental level, the mapping

problem is estimating the conditional probability distribution

in Equation 1.

𝑃(𝑚 | 𝑥0:𝑘 , 𝑧0:𝑘 , 𝑢0:𝑘)

m corresponds to the map of features locations. x0:k

corresponds to the UAV’s estimated location at each time

point. z0:k corresponds to the estimated feature locations from

the UAV’s camera at each time point. u0:k corresponds to the

movement sequence since the first time point.

Applying the feature detector to images from a UAV

camera allows us to construct a feature map and, by

comparing with previous frames, we can also determine

distances and camera pose – a computation that cannot easily

be done on a single frame. From these distances and poses,

we can compute an estimation of where the UAV camera is

relative to the features. With the mapping, distance, and pose

at each point, we can also estimate a path for the UAV within

the environment, which alongside the map results in a SLAM

system. That said, this subproblem essentially encompasses

visual odometry, which is essentially SLAM without saving

the map and just tracking the camera trajectory [6]. At the

fundamental level, the mapping problem is estimating the

conditional probability distribution in Equation 2.

𝑃(𝑥𝑘 | 𝑧0:𝑘 , 𝑢0:𝑘 , 𝑚)

xk corresponds to the UAV’s estimated location at the current

time point. z0:k corresponds to the estimated feature locations

from the UAV’s camera at each time point. u0:k corresponds

to the movement sequence since the first time point. m

corresponds to the map of features locations.

Unsurprisingly, many SLAM variations exist since there

are a lot of moving parts in this algorithm that might cause

bottlenecks for some systems. Two such variations are:

RGB-D SLAM [7] and ORB-SLAM [8]. RBG-D SLAM is a

few years older than ORB-SLAM and passes depth images

to a back-end to estimate pose and the RBG images to a front-

end to map features, receive the pose estimation, and

generate the point cloud and pose trajectory. ORB-SLAM

(2)

(1)

Cascade
Detector

1. Detect face

2. Compute distance vector

3. Center UAV

Figure 1. Face following schematic. An image is passed

to the cascade object detector. The detector draws a

bounding box around the face. The centering vector

from the current center to the center of the bounding box

is computed. The UAV moves in the direction of the

centering vector while maintaining a safe, specified

distance.

 3

specifically extracts ORB features, hence the name,

initializes a map based on a pairwise feature mapping

between two consecutive images, it keeps track of the local

map and iterates through images until there is a “keyframe”

e.g. a significant difference in the feature matches with the

previous keyframe. Then, it updates the map and pose at this

keyframe, saving on a significant computational expense.

Traditional ORB-SLAM expects and checks for a loop

closure – when an image has significantly similar features to

an earlier keyframe – to terminate its main loop. Deviating

away from the traditional pipeline, the ORB-SLAM

schematic for this paper is displayed in Figure 2.

Other notes on SLAM: Given the background on SLAM,

the alliteration of its computational expense, and some

intuition, it may already be obvious to the reader that SLAM

is an intractable problem. We can never solve the entire map

or know precisely where we are located in it; hence the

computational expense to build the map and determine the

probability distribution for the location is taxing. SLAM can

only ever return a best guess of the map and location but for

problems that require just some partially correct point cloud

to function at an adequate level, such as path planning, earn

a practical benefit from the map. Despite its insolvability,

SLAM is nonetheless useful.

On visual odometry, the Cadena et al paper posits that a

SLAM algorithm without loop closure is essentially just

visual odometry [6]. Although this claim may be entirely

true, I believe that this implementation is still closer to

SLAM because it maintains a persistent map whereas visual

3 https://www.mathworks.com/products/parallel-computing.html

odometry just compares the features of consecutive frame,

discarding the map altogether [9]. If so, the vSLAM

implementation in this paper is then visual odometry that is

almost ORB-SLAM, minus loop closure and the final

optimization.

MATLAB provides a standard visual ORB-SLAM

example on the TUM long_office_household dataset. This

code and the associated helper functions were adapted to the

project at hand. In order for this SLAM implementation to

work, MATLAB’s Computer Vision and Parallel

Computing3 Toolboxes are required, with the Computer

Vision Toolbox’s parallel processing backend toggled on.

II. METHOD

In order to maintain some semblance of a clean,

interpretable code structure for this project. The hierarchy is

delegated into three files, using MATLAB2020b:

1. main.m: This file is the high-level “API” for the project

code. At the head, it contains all of the necessary notes

for a full understanding of the code and frequent issues

that were encountered during its production. Before and

after the code sections, there are cleanup commands. The

file then splits into three code sections: 1. connection and

takeoff, 2. face following, and 3. vSLAM. The face

following and vSLAM sections are intended to be run

separately, not consecutively.

2. follow.m: This file contains the function to recognize a

face and compute the centering vector and turn angle.

The arguments to the function are the drone’s camera

Figure 2. Visual ORB-SLAM schematic. The process starts by initializing the map with two initial frames from the camera.

During the initialization the UAV jiggles up and down to snapshot slightly different pairs of images with different feature

extractions but still with some matches. If the map initializes, then the program proceeds to the main loop where it first tracks

the features on a new frame. If the frame is a keyframe, then the new features are updated into the map. If the frame is not a

keyframe, then the loop continues. At the start of each loop iteration, the UAV executes the next move in the sequence.

Map
Initialization

Tracking
Local

Mapping

1 frame

Ignore non-keyframes

Initial map points

2 initial frames

Keyframe

Updated map pointsUAV camera

Unblock

UAV jiggles up and down

UAV moves through sequence

 4

object, the cascade object detector, and a distance

parameter. It returns the distance changes along the x-,

y-, and z-axes, the angle in radians for a subsequent turn,

and the image with the bounding boxes marked in.

3. vslam.m: This file executes vSLAM until completion or

error and returns nothing. The arguments to the function

are the drone object, the drone’s camera object, the

movement sequence, the number of movement cycles

for which to run the main loop, and the minimum

number of ORB feature matches for triangulation.

On the line of clean code, since many of the utilized functions

rely on the real-time status and feed of a dynamic CPS, they

are prone to throw errors that are beyond software’s control.

In that case, I enclosed functions that were common culprits

in error handling blocks to have some redundancy in case the

faulty input comes back in line in a subsequent iteration.

A. Face Following Method

 The face following function’s schematic is displayed in

Figure 1. The function steps are as follows:

1. Pass the frame to the object detector and retrieve a

bounding box location(s) for the detected object.

2. Draw boxes around all of the detected images.

3. Use the closest bounding box’s width and center

coordinates to compute the relative axis change as a

percentage of the max.
4. Based on some threshold percentage and some

minimum movement distance, set the axes distances

and return them to be used in a move command.

The drone’s camera object is passed to the function to yield

the image that will passed to the vision.cascadeObjectDetector

to identify any faces to center on. The height and width of the

captured frame are then gathered for later use in computing

the centering vector. Any frame’s center coordinates are

computed as half of the width and half of the height.

Afterwards, the image is passed to the object detector, a

bounding box is returned, and the shape of the bounding box

is inserted into the original frame to be returned by the

function.

The closest bounding box is chosen based on the greatest

area, assuming no giant faces or massive misclassifications.

The box width and center coordinates of the bounding box are

used to compute the pixel distances as a percentage of the

largest bounding box size, total image width, and total image

height.

𝑋𝑑𝑖𝑓𝑓 = (𝑏𝑏𝑜𝑥_𝑠𝑖𝑧𝑒𝑠(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
− bbox_width)/max(bbox_sizes)

𝑌𝑑𝑖𝑓𝑓 = (𝑏𝑏𝑜𝑥_𝑥 − 𝑐𝑒𝑛𝑡𝑒𝑟_𝑥)/𝑤𝑖𝑑𝑡ℎ

𝑍𝑑𝑖𝑓𝑓 = (𝑐𝑒𝑛𝑡𝑒𝑟_𝑦 − 𝑏𝑏𝑜𝑥_𝑦)/ℎ𝑒𝑖𝑔ℎ𝑡

Respectively, these three dimensions correspond to the x-, y-,

and z-axes, whose directions relative to the Tello are displayed

in Figure 3. The distance from the face to maintain was

determined using the percentage resulting from Equation 3,

where a list of bounding box width sizes is indexed by the face

4 MATLAB Monocular Visual Simulateneous Localization and Mapping

following function’s distance argument and causes the drone

to return a movement value that optimizes toward the desired

distance. Equations 4 and 5 show a similar optimization

toward the center of the bounding box, given the direction of

the move command’s principal axes. If the percentages

supersede some manual threshold, then the distance along the

corresponding axis will be returned as ± 0.2 meters depending

on the sign of the percentage. ± 0.2 meters are the minimum

distance that is supported by the Tello toolbox along any one

axis. Additionally, a yaw angle is returned as the y-axis

percentage of
𝜋

4
 radians.

 In the main script’s loop, the return values were used to first

display and save the bounding boxed images. Next, the axes

distances are fed to the Tello’s move function and the yaw

angle called with its turn function. After 60 seconds, the loop

terminates and the intermediate facial detection images can be

viewed in the ./imgs/faces directory.

Notes: Although I verified that a drone object could be passed

as a function argument and commanded from within an

executing function, I opted not to define the function that way.

The encapsulation likely would have been better so that the face

following function would not have to be run in an external loop.

However, when I was working with the Tello toolbox at first, I

noticed some overhead with connectivity when I was initially

calling the code from within the face following function.

Although, it neither stopped nor worsened when I switched to

the top-level call so it may have been due to external factors

such as overheating or low battery. If necessary, refactoring the

code into a single function call should not be a major issue.

B. Visual ORB-SLAM Method

The code for this vSLAM implementation was modified

from the MATLAB ORB-SLAM example4. In the main

script, vSLAM, unlike face following, runs

completely within its own function. The only reliance is the

setting of the movement sequence in main. Currently the move

(3)

Y

X

Z

Figure 3. Axes directions for MATLAB’s Tello hardware

support package. Positive values are in the direction of the

axes. The axes are intended to abide by the right-hand rule.

(4)

(5)

 5

sequence has to be manually set because the Tello often

disconnects randomly on extended flights so short sequences

for short vSLAM test runs is best.

The vSLAM function’s schematic is displayed in Figure 2.

This vSLAM implementation breaks down into three key parts:

map initialization, tracking and local mapping. Starting with

map initialization, the steps are as follows:

1. Track the ORB features on the first image to load the

pre-points, then track a second image.

2. Match the ORB feature correspondences between the

two images.

3. If enough matches are made (100), compute the

homography and fundamental matrices so that the

correct geometric transform is applied based on which

results in the least error for the relative camera pose.

4. If insufficient matches are made, then the loop restarts

on a new image. Manually, the loop has a maximum

of 5 iterations to find a matched image until an error is

thrown. If a match is not made in 5 iterations, it may

imply that the Tello has weak connection and low light

and needs to be reset.

5. Triangulate the 3D locations of the matched features

in the new map.

For map initialization, I modified the code to take the drone’s

camera images as input instead of an image data reader for a
fixed dataset. That way, the images could be read the Tello’s

images in real-time. Recall that the homography matrix is used

for planar scenes and the fundamental matrix is used for non-

planar scenes. Map initialization is very important to the initial

tracking problem in the main loop so it must work well in order

to have a truly successful vSLAM run.

 After the map initializes, the initial keyframes and map and

feature points are set for the main loop to begin running. The

visualizations also begin in this interim. The first part of the

main loop is feature tracking, which ultimately determines

whether the current frame is a keyframe such that the map

should be updated with new features. A keyframe is any frame

that satisfies: 1. twenty iterations have passed since the last

keyframe or the current frame is tracking fewer than 80 of the

current map points, and 2. current frame tracks fewer than 90%

of the map points tracked by the current keyframe. Modified to

work with a moving Tello, the main loop steps are as follows:

1. Move the drone according to the modulus of the

current move index by the length of the move

sequence.

2. If the Tello loses connection and throws an error, loop

back to see if connection is regained, changing no

indices except a break iteration countdown of 10.

Throw the error if the break countdown expires.

3. Extract ORB features from the frame and match with

the latest keyframe. If the new frame is not a keyframe,

continue the loop.

4. Estimate the camera pose with Perspective-n-Point

[10] in order to project the features to the current

frames perspective and correct using some bundle

adjustments[8]. This step, although esoteric, is

important for the fast computation of that ORB-SLAM

offers compared to the competition.

5. Determine if the current frame is a key frame given the

criteria. If so, the process continues to local mapping.

Else, the loop iterates, and the above steps are redone

for the next frame. Additionally, this step also speeds

up the process; instead of evaluating all of the features

in every frame for mapping, only a select few that are

substantially different are filtered for usage.

Now that the meat of ORB-SLAM has concluded with

tracking and just figuring out whether a frame is unique enough

to be mapped, the final stage in this vSLAM procedure is local

mapping. Compared to tracking this procedure is much simpler

and more intuitive, building the point cloud map and saving the

pose. The local mapping steps are as follows:

1. Add the new keyframe to the set.

2. Compare the keyframes features against all the other

keyframe features, looking for unmatched points that

occur in at least 3 other keyframes.

3. Bundle adjust the pose based on the adjacent

keyframes’ poses.

After local mapping, ORB-SLAM typically builds and

checks the loop closure dataset to determine when the camera

has circled back to its starting position and then performs one

last final optimization on the poses. Since this paper’s vSLAM

is using a predetermined move sequence instead of a

predetermined dataset, I removed the loop closure since using

seemed to almost intrinsically rely on the dataset having been

crafted before the vSLAM run. Additionally, the final
optimization often failed because it requires a continuous point

cloud but since Tello’s connection is weak it would sometimes

black out in between iterations creating discontinuous maps.

Ultimately, the optimization was not concerning because the

goal of this project was just to get visual SLAM functional in a

UAV.

C. Implementation Details

As indicated in the previous section, implementation of face

following and vSLAM both require the Computer Vision

Toolbox. It is important to then note that both of these

implementations are heavily vision-based. Additionally, the

Tello uses its camera to orient so mindfulness of lighting and

other visual factors was extremely important to ensure that

these methods worked. The Tello is additionally sensitive to

drafts and gusts from the blowback of its own propellers,

pushing it off course. On top of that, Tello does not have a very

strong WiFi connection and often will blackout mid-flight. Of

course, disturbances are inevitable and frequent, so they often

did not work for me until I changed my angle, or the stars

aligned; persistence is important.

III. EXPERIMENTS

For testing face following and vSLAM, I experimented with

both in repeat scenarios and in different settings, offering them

different encounters that are not explicitly guaranteed.

A. Face Following Experiments

To examine face following, I first tested to see if

MATLAB’s face detector would work as expected, detecting

my face adequately. Particularly, I wanted to see if it would

detect my face regardless of whether or not I was looking

directly at it or if my head were angled differently, such as if I

were looking at my phone or not. It follows that if it can detect

 6

my face at non-frontal angles, then it can compute a centering

vector and follow my face at that angle. Figure 4

demonstrates the side-by-side results of these experiments; my

apartment has poor lighting, so all of my images are poorly lit.

Similarly, I wanted to see if it could detect parts of faces, up

to the eyes and still track if some fraction of my head were cut

off from its view. Tello has a somewhat wide-angle camera so

I was not able to achieve this horizontally but vertically it was

fairly easy to trip it up. The results of this experiment are shown

in Figure 5. If even a fraction of my head were off the screen,

the detector would not recognize my face.

I additionally experimented with having no face at all in view

of the camera to see if the detector misclassifies non-faces.

Surprisingly, it did misclassify non-faces, but only if a human

face was not visible to yield a high confidence option. Tello

particularly liked to focus on the thermostat, as shown in Figure

6.

Finally, I wanted to test the full functionality of my face

following implementation. A POV video is attached in Video 1

[attached as a separate file]. Overall, the results of face

following were a success. The process is fairly responsive but a

little slow to update; the detector is particularly picky about

vertical movement which has to be slow. Although, if you

sidestep discretely and crouch and jump slowly it will follow

your face well!

B. vSLAM Experiments

For vSLAM, I mainly experimented with having the Tello

attempt to run it in different parts of my apartment. Different

areas had different objects and more edges, which I anticipate

is major factor in the feature extraction. In these experiments, I

created a move sequence to cycle the drone back and forth, left

and right, or in a square, both clockwise and counterclockwise.

I chose these different move sequences to see if they made a

different in the mapping and feature extraction. Unfortunately,

since Tello cannot keep a strong connection reliably for a long

enough duration to add many keyframes, I scrapped this idea

because there were no obvious differences and I could not make

any strong statistical claims about such findings with so few

datapoints.

There were some limitations to running vSLAM on Tello,

primarily the high probability of WiFi cutting for longer

movement sequences and the low lighting in my apartment

making feature detection that much harder. Often times, the

feature extraction on the image would result in too few features

due to a bad read on the image or instability. Typically, the map

initialization worked well, and the matching yielded some good

results. An example of a map initialization feature match is

displayed in Figure 7. Examples of a good feature extraction

and the average feature extraction in the main loop are shown

in Figure 8. As suspected, the best feature extraction was often

times in areas with nearby, crowded spaces with more edges to

offer vSLAM.

 In addition to the feature extraction, the point cloud map

generation was also visualized for these runs. A couple of

examples of the final point cloud maps and estimated

trajectories are displayed in Figure 9. Since no more than 10

keyframes were acquired by Tello, the maps were small but the

camera pose and estimated trajectory did a fairly good job at

Figure 5. Examples of when my face is not detected. Sliver of

head off screen (left), turned away (middle), and only top of

my head and eyes are visible (right). Ultimately, there has to

be some frontal view of the entire bust to be detected.

Figure 4. Examples of when my face is detected.

Looking at the Tello (left) and not looking at the Tello

(right). Nonetheless, it still detects my face and

doesn’t pick up much noise, even in low light.

Figure 6. Examples of face misclassification. These

misclassifications typically occur when there is no face

in view of the camera. Otherwise, they are rare and not

noticeable during a face following run.

Figure 7. Example of a map initialization feature match.

Typically, the map initialized and I could get a sense of

where the features were.

 7

estimating the Tello’s travel given that there were only a few

keyframe samples.

IV. DISCUSSION

Fortuitously, the face following and vSLAM

implementations were at least functional. I believe that these

results demonstrate. If anything, these two autonomous-leaning

implementations set the walkway for building up to even more

complex autonomous behavior using Tello, not considering the

computational requirements and resources at my disposal

currently. Of the two, face following works the best and

vSLAM is slightly more trying of one’s patience to get to work.

As I mentioned earlier, persistence was the key here. One

reason that face following might work better is that it is a

simpler problem that has been studied much longer than

vSLAM has and hence has more underlying optimization and

definitely more documentation lying around. Overall, I am

itching to develop this vSLAM implementation further; I feel

as if I am just a few steps away from it working like it was meant

to. If there is some way I can improve the Tello connection,

improve its stabilization, and mitigate any of its other external

factors that apparently cause a significant number of minor

nuisances then I think that I could integrate face following and

vSLAM to take quadcopter autonomy to the next level for me.

During this project, I assuredly spent more time reading code

and papers to try and understand SLAM in general. I looked

into using so many different SLAM approaches that it took

some luck to stumble upon the MATLAB example and stare at

it long enough to realize that I could repurpose some of its code

to fit my needs.

Initially, I intended to use a Parrot ANAFI to implement

this project in Python. At first the ANAFI seemed very

promising; it had a somewhat maintained SDK in iOS and an

Figure 8. Examples of good (left) and average (right) feature extraction. Often times, the good initial feature extractions really set the

momentum for how the rest of the main loop would turn out. Notice that the busier nearby area with more edges acquires more features.

Figure 9. Examples of map plots and estimated trajectories and camera pose. Both of the movement sequences were left and right

images and that the number on the camera indicates that there were 10 keyframes in this vSLAM run.

 8

older version of the SDK in Python. But as I explored more and

tried out the works, I realized that the Parrot SDKs were not

actively being maintained, were so buggy that they were

defunct, even on iOS, and that very few developers had ever

even tried the SDK. At first, I thought I lucked out when I found

a professor’s library PyParrot library5 but it too was not being

maintained. Additionally, the library was not very flexible in

accessing the camera feed and passing back up computed RC

commands to the main function. I was able to get the ANAFI to

fly to a predetermined, hard-coded set of commands and save

images with detected faces but nothing more. By this time, I had

discovered the MATLAB’s Tello toolbox and decided to table

ANAFI for another day. Even though I cannot recover the time

that I lost to attempting to get ANAFI to work, I learned a lot

about SLAM and what is available out there in terms of research

To become acquainted with the Tello toolbox, I followed

along with the premier demo, spinAndFind6. The demo walks

through a simple script utilizing a few of the key toolbox

functions and actually uses an object detector to recognize

Mona Lisa images around the room as it turns and builds a

montage of a handful of images. I essentially used this script as

a very small springboard reference since it was peripherally

related to face following. Other than that, I for the most part

constructed the logic of the code through trial and error and

other times referring to a YouTuber’s now-deprecated Python
implementation7 from before the MATLAB toolbox release that

I had tested out in the summer.

 Implementation Challenges

I spent many weeks and many fruitless hours trying to simply

get drones to respond to my code. Obviously, I spent a

substantial amount of my initial time breaking my neck with

ANAFI. But the neck-breaking did not stop when I started

working with Tello in MATLAB. My experience with

programming quadcopters was admittedly much more limited

than I thought before embarking on this project journey. I had

to improvise frequently and do a lot of debugging. Early this

semester, I definitely hyped myself and was far too optimistic

about what I could truly accomplish in a reasonable amount of

time – this was actually a theme for me this semester and a

strong life lesson.

 Particular to Tello, MATLAB’s hardware support package

does not have a substantial amount of support and there are a

number of known bugs on the open forum8, many of which I

encountered while working on this project. Since the support

package was only released this year, very few answers were

available and even the devs seemed to be unaware as to why the

bugs were occurring. Apparently, the battery, the temperature,

and the lighting are all critically important for Tello to function.

Additionally, indoors environments where the gusts from its

own propellers can throw it off course would often push the

Tello into a collision course from my wall, not to mention that

spontaneous loss of connection with Tello would cause

MATLAB to crash completely if the workspace was not

immediately cleared.

5 https://github.com/amymcgovern/pyparrot
6 https://www.mathworks.com/videos/control-ryze-tello-drones-from-

matlab-1595582029947.html

In terms of implementing the functions, I encountered a lot

of difficulty in programming the movement of the drone

initially for the face following. It took a ton of manual tweaking

of parameters that I had defined because the Tello was so

sensitive to movement in some direction but not in others.

Particularly, the support package does not operate in terms of

yaw, pitch, and roll but rather x, y, z and turn. In some ways

this approach was more intuitive, but in many it was quite

limiting.

Implementing vSLAM was whole different beast in and of

itself. As I scoured the web searching trying to find some hint

of a viable SLAM implementation for a quadcopter that would

not ask me to reinvent the wheel, I have never desired a Linux

computer more. And a virtual machine just will not cut it for

running SLAM, which invariably requires more memory and

RAM than I could ever afford to give on my laptop.

Nonetheless, I learned a lot reading papers and taking the time

to shapeshift the ORB-SLAM example and actually understand

the underpinnings of it.

V. CONCLUSION

In this project, I implemented and experimented with

face following and ORB-SLAM on a Tello drone using the

recent MATLAB support package. The road was tough but

it was worth it, just like any autonomy task that is worth it.
For both, the results bode well and even though vSLAM

was slightly hindered by hardware it nonetheless turned out

a result. With some different iron, these functions could be

integrated together to take one step closer to full quadcopter

autonomy. A future avenue of work that I foresee for this

project is hide-n-seek; using face detect and following to

hide and catch, vSLAM to learn and map the environment,

and then using the generated map for path planning.

VI. REFERENCES

[1] P. Viola and M. Jones, “Rapid Object Detection using

a Boosted Cascade of Simple Features,” 2001 Comput.

Vis. Pattern Recognit., 2001.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You only look once: Unified, real-time object

detection,” Proc. IEEE Comput. Soc. Conf. Comput.

Vis. Pattern Recognit., vol. 2016-December, pp. 779–

788, 2016, doi: 10.1109/CVPR.2016.91.

[3] T. Lindeberg, “Scale Invariant Feature Transform,”

Scholarpedia, vol. 7, no. 5, p. 10491, 2012, doi:

10.4249/scholarpedia.10491.

[4] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool,

“Speeded-Up Robust Features (SURF),” Comput. Vis.

Image Underst., vol. 110, no. 3, pp. 346–359, 2008,

doi: 10.1016/j.cviu.2007.09.014.

[5] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,

“ORB: An efficient alternative to SIFT or SURF,”

Proc. IEEE Int. Conf. Comput. Vis., pp. 2564–2571,

7 https://github.com/Jabrils/TelloTV/blob/master/TelloTV.py
8 MATLAB Support Package for Ryze Tello Drones (comments and ratings)

 9

2011, doi: 10.1109/ICCV.2011.6126544.

[6] C. Cadena et al., “Past, present, and future of

simultaneous localization and mapping: Toward the

robust-perception age,” IEEE Trans. Robot., vol. 32,

no. 6, pp. 1309–1332, 2016, doi:

10.1109/TRO.2016.2624754.

[7] F. Endres, J. Hess, N. Engelhard, J. Sturm, D.

Cremers, and W. Burgard, “An Evaluation of the

RBG-D SLAM System,” 2012.

[8] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos,

“ORB-SLAM: A Versatile and Accurate Monocular

SLAM System,” IEEE Trans. Robot., vol. 31, no. 5,

pp. 1147–1163, 2015, doi:

10.1109/TRO.2015.2463671.

[9] B. Williams and I. Reid, “On combining visual SLAM

and visual odometry,” Proc. - IEEE Int. Conf. Robot.

Autom., pp. 3494–3500, 2010, doi:

10.1109/ROBOT.2010.5509248.

[10] S. Li, C. Xu, and M. Xie, “A robust O(n) solution to

the perspective-n-point problem,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1444–

1450, 2012, doi: 10.1109/TPAMI.2012.41.

VII. APPENDIX

The code and README will be attached as PDFs. Video 1 will

also be uploaded separately. Code and usage documentation can

be found at this GitHub repository:
https://github.com/zstoebs/tello_detection_SLAM.

https://github.com/zstoebs/tello_detection_SLAM

	I. Background
	A. Introduction to Face Following
	B. Introduction to SLAM

	II. Method
	A. Face Following Method
	B. Visual ORB-SLAM Method
	C. Implementation Details

	III. Experiments
	A. Face Following Experiments
	B. vSLAM Experiments

	IV. discussion
	V. Conclusion
	VI. references
	VII. appendix

