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Variable Projection
Assume 𝑭	is full-rank and in a high SNR regime. Approximate #𝒎(𝒓, 𝑡) = 𝑭!"𝒚 𝒓, 𝑡 = 𝑯#𝒙(𝒓) 
from 𝑘 samples across time. 
Parameterize 𝑯$(𝒓) = 𝒉$ 𝒓, 𝑡% %&"

'  where 𝒉$ 𝒓, 𝑡 : 	ℝ()" → ℂ*!	×	*"	×	…	×	*#. 
Let #𝒎(𝒓) = #𝒎 𝒓, 𝑡% %&"

' . We wish to solve: 

min
𝒙,$

|| #𝒎(𝒓) 	− 𝑯$(𝒓)𝒙(𝒓)|| 	≡ min
$
|| #𝒎(𝒓) 	− 𝑯$(𝒓)

#𝒎 𝒓 0𝑯$(𝒓)
𝑯$ 𝒓 0𝑯$(𝒓)

||

where #𝒙$ 𝒓 = 1𝒎 𝒓 $𝑯%(𝒓)
𝑯% 𝒓 $𝑯%(𝒓)

 is the coordinate-wise variable projection [3] of 𝒙(𝒓) onto col(𝑯$). 
Define the cost function: 

𝑓 𝒉$; 𝒓, #𝒎 = "
7
#𝒎 𝒓 −𝑯$ 𝒓 #𝒙$ 𝒓 7 where #𝒙$ ∈ 𝒳, 𝒉$ ∈ ℋ 
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Implicit Neural Representations
An implicit neural representation is 𝒉$ 𝒓, 𝑡 = 𝒇$(𝜸(𝒓, 𝑡)). [1]  Define the 
lifting operator of random Fourier features:

𝜸 𝒓, 𝑡 = cos 2𝜋𝑩 𝒓, 𝑡 8 , sin 2𝜋𝑩 𝒓, 𝑡 8  

where 𝑩 ∈ ℝ9	×(()") is sampled from 𝑁 0, 𝑠7 . The embedding size 𝑙 and 
the scale 𝑠 are tunable. [2] 

Insights & Next Steps
• If the physical system has non-zero initial conditions, then we expect that 𝒙∗ 𝒓 = #𝒎 𝒓, 0 ≈
#𝒙$ 𝒓 𝒉$(𝒓, 0). 

• 𝑁𝑅𝑀𝑆𝐸(#𝒙$ 𝒓 𝒉$ 𝒓, 𝑡 , #𝒎 𝒓, 𝑡 ) is low but 𝒉$ 𝒓, 𝑡 	and #𝒙$ 𝒓  are incorrect → explore other manifold 
projections, variable splitting, regularization, perturbation and projection error. 

Problem Setup
Imaging systems have spatiotemporal dynamics. The inverse problem can be defined as: 

𝒚 𝒓, 𝑡 = 𝑭𝑯#𝒙(𝒓) + 𝒏(𝒓, 𝑡) 

where [𝒓, 𝑡] ∈ ℝ()"; 	𝒙, 𝒚, 𝒏 ∈ 	ℂ*!	×	*"	×	…	×	*#; 	𝒏	~	𝑁 0, 𝜎7 . 𝑭 and 𝑯# are the measurement 
and system effect operators, respectively. 

Conventional methods rely on idealized physical models, but real systems have system-
specific effects with unknown models, e.g., magnetic hysteresis, eddy currents, thermal 
drift.  

• Can we identify unknown system effects 𝑯#	from a few measurements across time without 
relying on idealized physical models?

• Can we jointly reconstruct the image 𝒙?
• Can we accomplish these tasks while only optimizing the parameters 𝜃 of a neural network? 
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MRI Signal & Objective
The spatiotemporal MRI signal equation [4] is: 

𝒚 𝒌, 𝑡 = Y𝒙(𝒓) 𝑒
!#
8"∗(𝒓)𝑒!;7<𝝎 𝒓 ⋅#𝑒!;7<𝒌 # ⋅𝒓𝑑𝒓 + 𝒏(𝒓, 𝑡) 

where 𝝎 is off-resonance and 𝒌 is the k-space trajectory. With the assumptions, we have: 

#𝒎 𝒓, 𝑡 = 	𝒙(𝒓)𝑒
!#
8"∗(𝒓)𝑒!;7<𝝎 𝒓 ⋅#

This implies that #𝒎 𝒓, 0 = 	𝒙(𝒓). However, these ideal models may not be exactly reflected in 
the real measurements, implying #𝒎 𝒓, 0 = 𝑯@𝒙(𝒓) where 𝑯@ is the initial condition. 
Define the objective: 

𝑓 𝒉!; 𝒓, 1𝒎 =
1
2
( 1𝒎 𝒓 −𝑯! 𝒓 1𝒙! 𝒓 " + 𝜆# 𝒉! 𝒓, 0 − 𝟏 " + 𝜆" 𝐷$" 𝒉! 𝒓, 𝑡% %&#

' "
+ 𝜆( 𝐷)" 1𝒙! 𝒓 %&#

*!	×	*"	×	…	×	*# "
)

Time intercept 2nd-order finite differences 
over time

Data consistency 2nd-order finite differences 
over space

Magnitude and phase of !𝒙! 𝒓 𝒉! 𝒓, 0  (NRMSE=0.12) 

Estimates of 𝑇"∗ decay 𝒉! 𝒓, 𝑡	 = 𝑒
!"

#$
∗(𝒓) (NRMSE=0.67) 

and off-resonant phase ∠𝒉! 𝒓, 𝑡	 = 2𝜋𝝎 𝒓 ⋅ 𝑡 (NRMSE=1.08)

Estimates of 𝑇"∗ decay 𝒉! 𝒓, 𝑡	 = 𝑒
!"

#$
∗(𝒓) (NRMSE=0.64) 

and off-resonant phase ∠𝒉! 𝒓, 𝑡	 = 2𝜋𝝎 𝒓 ⋅ 𝑡 (NRMSE=1.13) at 𝑡$

Magnitude and phase of !𝒙! 𝒓 𝒉! 𝒓, 0  (NRMSE=0.53) 

Magnitude and phase of ground truth 𝒙∗ 𝒓  

Ground truth 𝑇"∗ decay 𝑒
!")
#$
∗(𝒓) 

and off-resonant phase 2𝜋𝝎 𝒓 ⋅ 𝑡$


