

The University of Texas at Austin Chandra Department of Electrical and Computer Engineering Cockrell School of Engineering

Generalized system identification and joint signal reconstruction with implicit neural representations, with application to MRI

 $\|\boldsymbol{\theta}(\boldsymbol{r})\|^2$ where $\widehat{\boldsymbol{x}}_{\theta} \in \mathcal{X}$, $\boldsymbol{h}_{\theta} \in \mathcal{H}$

 $e^{-j2\pi k(t)\cdot r}dr + n(r,t)$

Zach Stoebner & Prof. Jon Tamir Computational Sensing & Imaging Lab (ECE)

Acknowledgements

Variable Projection

Assume F is full-rank and in a high SNR regime. Approximate $\widehat{\bm{m}}(\bm{r},t) = \bm{F}^{-1}\bm{y}(\bm{r},t) = \bm{H}_t\bm{x}(\bm{r})$ from k samples across time.

Parameterize $H_{\theta}(r) = [h_{\theta}(r,t_i)]_{i=1}^k$ where $h_{\theta}(r,t)$: $\mathbb{R}^{d+1} \to \mathbb{C}^{m_1 \times m_2 \times ... \times m_d}$. Let $\widehat{\boldsymbol{m}}(\boldsymbol{r}) = [\widehat{\boldsymbol{m}}(\boldsymbol{r},t_i)]_{i=1}^k$. We wish to solve:

where $\widehat{\mathbf{x}}_{\theta}(\mathbf{r}) =$ $\widehat{\boldsymbol{m}}(\boldsymbol{r})^H \boldsymbol{H}_{\boldsymbol{\theta}}(\boldsymbol{r})$ $\frac{m(r)-H_{\theta}(r)}{H_{\theta}(r)^H H_{\theta}(r)}$ is the coordinate-wise variable projection [3] of $\pmb{x}(\pmb{r})$ onto $\text{col}(\pmb{H}_{\theta}).$ Define the cost function:

An implicit neural representation is $h_{\theta}(r,t) = f_{\theta}(\gamma(r,t))$. [1] Define the lifting operator of random Fourier features:

where $B \in \mathbb{R}^{l \times (d+1)}$ is sampled from $N(0, s^2)$. The embedding size *l* and the scale s are tunable. [2]

$$
\min_{x,\theta} ||\widehat{m}(r) - H_{\theta}(r)x(r)|| \equiv \min_{\theta} ||\widehat{m}(r) - H_{\theta}(r)\frac{\widehat{m}(r)^{H}H_{\theta}(r)}{H_{\theta}(r)^{H}H_{\theta}(r)}||
$$

• $NRMSE(\widehat{\bm{x}}_{\theta}(\bm{r})\bm{h}_{\theta}(\bm{r},t),\widehat{\bm{m}}(\bm{r},t))$ is low but $\bm{h}_{\theta}(\bm{r},t)$ and $\widehat{\bm{x}}_{\theta}(\bm{r})$ are incorrect \to explore other manifold projections, variable splitting, regularization, perturbation and projection error.

References

Implicit Neural Representations

 $\boldsymbol{\gamma}(\boldsymbol{r},t) = [\cos(2\pi\boldsymbol{B}[\boldsymbol{r},t]^T)$, $\sin(2\pi\boldsymbol{B}[\boldsymbol{r},t]^T)$

where $[r,t]\in\mathbb{R}^{d+1};\ x,y,n\in\ {\mathbb{C}}^{m_1\times m_2\times...\times m_d};\ n\sim N(0,\sigma^2).$ F and H_t are the measurement and system effect operators, respectively.

Insights & Next Steps

• If the physical system has non-zero initial conditions, then we expect that $x^*(r) = \widehat{\bm{m}}(r,0) \approx$

Problem Setup

Imaging systems have spatiotemporal dynamics. The inverse problem can be defined as:

 $y(r, t) = FH_t x(r) + n(r, t)$

This implies that $\bm{\widehat{m}}(\bm{r},0)=\bm{x}(\bm{r}).$ However, these ideal models may not be exactly reflected in the real measurements, implying $\bm{\widehat{m}}(\bm{r},0)=\bm{H}_0\bm{x}(\bm{r})$ where \bm{H}_0 is the initial condition. Define the objective:

$$
f(\boldsymbol{h}_{\theta}; \boldsymbol{r}, \widehat{\boldsymbol{m}}) = \frac{1}{2} ||\widehat{\boldsymbol{m}}(\boldsymbol{r}) - \boldsymbol{H}_{\theta}(\boldsymbol{r}) \widehat{\boldsymbol{x}}_{\theta}(\boldsymbol{r})||^2 \text{ where } \widehat{\boldsymbol{x}}
$$

MRI Signal & Objective

Conventional methods rely on idealized physical models, but real systems have systemspecific effects with unknown models, e.g., magnetic hysteresis, eddy currents, thermal drift.

- Can we identify unknown system effects H_t from a few measurements across time without relying on idealized physical models?
- Can we jointly reconstruct the image x ?
- Can we accomplish these tasks while only optimizing the parameters θ of a neural network?

- $\widehat{\boldsymbol{x}}_{\boldsymbol{\theta}}(r) \boldsymbol{h}_{\boldsymbol{\theta}}(r, 0).$
-

[1] Sitzmann, Vincent, et al. "Implicit neural representations with periodic activation functions." *NeurIPS* (2020). [2] Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional

domains." *NeurIPS* (2020). applications." *Inverse problems* (2003).

[3] Golub, Gene, and Victor Pereyra. "Separable nonlinear least squares: the variable projection method and its [4] Funai, Amanda K., et al. "Regularized field map estimation in MRI." *IEEE-TMI* (2008).

This work is supported in part by

The spatiotemporal MRI signal equation [4] is:

$$
\mathbf{y}(\mathbf{k},t)=\int \mathbf{x}(\mathbf{r})\,e^{\frac{-t}{T_2^*(\mathbf{r})}}e^{-j2\pi\boldsymbol{\omega}(\mathbf{r})\cdot t}e^{-j2\pi\boldsymbol{\omega}(\mathbf{r})\cdot t}e^{-j2\pi\boldsymbol
$$

where ω is off-resonance and k is the k-space trajectory. With the assumptions, we have: $\hat{\mathbf{m}}(\mathbf{r},t) = \mathbf{x}(\mathbf{r})e$ $-t$ $\overline{T_2^*(r)}e^{-j2\pi\omega(r)\cdot t}$

$$
f(\boldsymbol{h}_{\theta};\boldsymbol{r},\widehat{\boldsymbol{m}})=\frac{1}{2}(\|\widehat{\boldsymbol{m}}(\boldsymbol{r})-\boldsymbol{H}_{\theta}(\boldsymbol{r})\widehat{\boldsymbol{x}}_{\theta}(\boldsymbol{r})\|^{2}+\lambda_{1}\|\boldsymbol{h}_{\theta}(\boldsymbol{r},0)-\boldsymbol{1}\|^{2}+\lambda_{2}\big\|D_{t}^{2}\{\boldsymbol{h}_{\theta}(\boldsymbol{r},t_{i})\}_{i=1}^{k}\big\|^{2}+\lambda_{3}\big\|D_{r}^{2}\{\widehat{\boldsymbol{x}}_{\theta}(\boldsymbol{r})\}_{i=1}^{m_{1}\times m_{2}\times...\times m_{d}}\big\|^{2})
$$
\n\nData consistency\n\nTime intercept\n\n
$$
\sum_{\text{Data consistency}}\sum_{\text{Time intercept}}\sum_{\text{order finite differences}}\sum_{\text{order finite differences}}\sum_{\text{order finite differences}}\sum_{\text{order finite differences}}\sum_{\text{order finite differences}}\sum_{\text{order}}\sum_{\text{surface differences}}\sum_{\text{order}}\sum_{\text{surface differences}}\sum_{\text{order}}\sum_{\text{surface differences}}\sum_{\text{order}}\sum_{\text{surface differences}}\sum_{\text{order}}\sum_{\text{surface differences}}\sum_{\text{average}}\sum_{\text{average}}\sum_{\text{average}}\sum_{\text{surface differences}}\sum_{\text{average}}\sum_{\text{surface differences}}\sum_{\text{average}}\sum_{
$$

over time

over space