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Problem Setup Implicit Neural Representations

Imaging systems have spatiotemporal dynamics. The inverse problem can be defined as: An implicit neural representationis hg(r,t) = fo(y(r,t)).[1] Define the
lifting operator of random Fourier features:
y(r,t) = FH:x(r) + n(r,t) A /A
y(r,t) = [cos(2rnB]r, t]"), sin(2rB]r, t]')] oo [ ' @
where [r, t] € Rt x,y,n e C™*M2X~XMda. n ~ N(0,02). F and H, are the measurement ’ ‘ ‘v
and system effect operators, respectively. where B € R} *(@+1) js sampled from N (0, s?). The embedding size [ and / \

the scale s are tunable. [2]
Conventional methods rely on idealized physical models, but real systems have system-
specific effects with unknown models, e.g., magnetic hysteresis, eddy currents, thermal
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 (Can we identify unknown system effects H; from a few measurements across time without E T
relying on idealized physical models?

* (Can we jointly reconstruct the image x?
« Canwe accomplish these tasks while only optimizing the parameters 6 of a neural network? .

1D Simulation & 2D GRE MRI
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Estimates of T, decay |hy (1, t )| = e72® (NRMSE=0.67)
and off-resonant phase 2hy(r,t ) = 2nw(r) - t (NRMSE=1.08)

Assume F is full-rank and in a high SNR regime. Approximate m(r,t) = F~1y(r,t) = H.x(r) M DRI | B
from k samples across time. B N
Parameterize Hy (1) = [hg (1, t;)]_; where hy(1,t): Rt — CM1 XMz X .. X Mg, AR A J\M JV
Let m(r) = [m(r, t;)],;. We wish to solve: W"" )
o A m(r)?Hg(r) e IR L )
min ||@(r) — Ho(mx(r)ll = min [IM(r) = Ho(r) e oS e e e em e e _3

where Xg (1) = m(r)HHe(r) is the coordinate-wise variable projection [3] of x(r) onto col(Hy). andii?.‘i;‘ﬁcf;‘;?lﬁ;’fé’iiif_g.tl anc of'?ii?frfiit";fﬁs‘fiiiii’?f?i)z';i? ¢ NRMSE=1.13)at £

Ho(r)HHg(r)
Define the cost function:
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f(hg; T, ) = ~||M(r) — Ho(r)% (r)||? where %y € X, hg € H

MRI Sighal & Objective ) 3 .
The spatiotemporal MRI signal equation [4] is: ‘ _ B ' % o - :
_t -0.0 -0. -3
— T (r) p—j2nw(r)-t ,—j2rk(t)r .
y(k, 1) f"(”) erete e ar +n(r, t) Insights & Next Steps
where w is off-resonance and k is the k-space trajectory. With the assumptions, we have: * If the physical system has non-zero initial conditions, then we expect that x*(r) = m(r,0) ~

_t P
M t) = x(r)els Me—j2me@):t Xg(r)hg(r,0).

o | _ | | * NRMSE(Xg(r)hg(r,t),m(r,t))islowbut hg(r,t) and Xg(7) are incorrect — explore other manifold
This implies that m(r,0) = x(1). However, these ideal models may not be exactly reflected in orojections, variable splitting, regularization, perturbation and projection error.

the real measurements, implying m(r,0) = Hyx(r) where H is the initial condition.
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